连载 | 理解线性代数04 利用行列式求解 Ax = b



本篇引入行列式,通过行列式求解方程组 Ax = b。此外,介绍了行列式的几何意义。

            


学习这件事,不是缺乏时间,而是缺乏努力。



行列式的引入




行列式的定义


行列式原始定义是由莱布尼兹引入的。


下面从现代角度引入行列式。行列式 (Determinant) 是一个函数,将 n x n 的矩阵 A 映射到一个标量,记做 det(A) 或 |A|。


下面尝试用最小的性质 (基本性质) 定义出矩阵的行列式。

1. det I = 1 ( 单位矩阵行列式为 1)。

2. 交换行(列),行列式变号。

3. 行列式满足行 (列) 线性运算。


性质 1, 2 比较理解。下面说明性质 3。


        


需要注意的是:必须是同一行(或列)


利用以上 3 条性质,可得出一系列推论。


4. 置换矩阵 ( 性质 1+2 推论 )


        


5. 若方阵两行相等,则行列式为 0 (性质 2 推论)。


6. 将方阵的某一行(列)乘以常数 后加到另一行(列)上去 (基本变换 3) 不改变行列式 (性质 3 推论)。


7. 上三角矩阵:


        

推论 6 推论,使用基本变换3,最终可得到对角阵,然后利用性质 3,得之。 


行列式的表达式



有了上述性质,尝试计算行列式。先看简单的情形 ( 2 x 2)。


思路一:利用消元法


        


思路二:利用性质 3 (这种思路比较通用)



先按照 第一行 线性展开,然后按照 第二行 展开。去除无用的行列式(行列式为0) :


        


同样的思路,考察 3 x 3 矩阵。先按照 第一行 展开,然后 第二行 展开,最后 第三行 展开,最终得到 3 x 3 x 3 = 27 行列式之和。最终有效的只有如下 6 个矩阵。



最终得到 :

        detA ) =  


不难归纳得出:


        


逆序数计算规则

        从左到右依次计算每个数的右侧比它小的个数,称为逆序数。

        比如:sgn(412563) = 3 + 0 + 0 + 1 + 1 + 0 = 5。



行列式的通用解法:代数余子式



继续考察 3x3 情形,进行分组,得到:



引入了代数余子式的概念。

定义: a_ij 的代数余子式:将原行列式的第 i 行和第 j 列抹去,剩下 (n-1) x (n-1) 阶行列式 C_ij,其中 C_ij 的符号为 (-1)^(i+j)。


那么,沿着第一行展开后的行列式定义为:

        

不难推广,可以沿着任一行(列)进行展开。

        



总结:目前介绍了三种方式求解矩阵的行列式的方法。


    1. 消元法。det (A) 为主元的乘积;

    2. 直接利用行列式表达式,即为 n! 项之和。

    3. 利用代数余子式。



利用行列式求解 Ax = b


引理


求解方程组,本质是在求解 A 的逆矩阵。行列式提供了一种思路。


先看两个式子:

        


式 1 不难理解,就是行列式的代数余子式求法。

式 2 可以从右往左理解。假定第 i 行 和第 j 行相同,此矩阵的行列式为0。按第 j 列展开得到左边的式子。


综上,得到:


        

进一步得到:


        


显然,我们已经解出来 A 的逆。


        

注意:是 C 的转置。


克莱默法则(Cramer's Rule)


        


观察 每个分量,

        

那么,其实就是原始矩阵的行列式(按照第 1 列展开)

        


其它分量:

         

        


理论上很简洁,但计算上并不方便。程序中依然采用高斯消元法。



行列式的几何意义


面积论


先给出二维情形,

        

由向量 (1, 0) 和 (0, 1) 构成一个正方形,那么 det (I) = 1  = 正好等于面积。

        

定义了向量 (a, c) 和 (b, d) 构成的面积。面积 = det (A)。


同理,三维情形就是体积(三维面积)。


推广:N 个 向量张成的一个 N 维广义四边形的面积,即为行列式 (行列式的几何意义)。


线性变换论


之前说过,A x 可以表示一种线性变换,即为 n 维空间到 n 维空间的线性变换。


那么行列式可以表示为:线性变换的(面积)放大率


A I = A => 结合 面积论,A 的面积 = det(A)(看成放大倍数) x 面积(I) = det(A) x 1 = det (A) 


使用放大倍数,很容易理解:


    det(A) x det(B) = det(AB) 

    det(B) x det(A) = det(BA)

    det(AB) = det(BA)


    det(A A^-1) = det(A) x det(A^-1) = det(I) = 1

    det(A^-1) = 1 /det(A) 


自然想到:如果 det(A) = 0 的情形, det(A^-1) = 1 /det(A)  = ∞, 说明 A 没有逆矩阵。这样导致 n 维面积为 0(当然 n -1 维面积不一定为0, 比如 三维体积会经过 A 的变换会坍塌成二维,体积为 0)


结论: A 是奇异矩阵 = A 不可逆 = det(A) = 0。


本文转载自我师弟的公众号,在此谢过!



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值