# Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19970    Accepted Submission(s): 8969

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

Output
The output contains the number of digits in the factorial of the integers appearing in the input.

Sample Input
2 10 20

Sample Output
7 19

/*直接计算阶乘，实际上是不可行的，因为数太大 #include<stdio.h> #include<string.h> #define LEN 10000000 int a[LEN]; int main(){     int i,sum,j,c,N,n,max;     scanf("%d",&N);     while(N--){         scanf("%d",&n);         memset(a,0,sizeof(a));         a[0]=max=1;         for(i=2;i<=n;i++)             for(j=0,sum=c=0;j<LEN;j++){                 sum=c+a[j]*i;                 a[j]=sum%10;                 c=sum/10;             }         for(i=LEN-1;i>=0&&a[i]==0;i--);         printf("%d\n",i+1);     }              system("pause");     return 0; } */

/* 取对数计算法
#include<stdio.h>
#include<math.h>
int main(){
int i,n,x;
double sum;
scanf("%d",&n);
while(n--){
scanf("%d",&x);
sum=0;
while(x>=1){
sum+=log10(x);
x--;
}
sum=floor(sum);
printf("%.0lf\n",sum+1);
}
return 0;
}
*/
方法三：利用斯特林公式计算。斯特林公式如图：
代码：
#include<stdio.h>
#include<math.h>
#define PI 3.1415926
int main(){
int i,n,x,sum;
scanf("%d",&x);
while(x--){
scanf("%d",&n);
sum=(int)((n*log(n)-n+0.5*log(2*PI*n))/log(10))+1;
printf("%d\n",sum);
}
return 0;
}