自我学习就是把稀疏自编码器与Softmax回归分类器串联起来。
稀疏编码器是用来无监督学习的,使用无标签数据
回归分类器是有监督学习,使用标签数据
实际生活中,我们能轻松获得大量无标签数据(如从网上随机下载海量图片)
难以获得大量有标签数据(有标签的数据库通常不会太大,而且很贵
如果我们手头上只有少量标签数据,但是有大量的无标签数据,这是就可以采用自我学习的方式,得到有用的特征,进而获得比单纯Softmax好得多的效果。
我们还是用MINST数据库,我们把0~4这些手写体数据作为无标签数据;把5~9这些手写体数据再次一分为二,一部分为测试数据,一部分为验证数据。
程序方面因为有了前面几节的基础,把相关函数调用一下就好:

自我学习结合稀疏自编码器和Softmax回归分类器,通过大量无标签数据进行预训练,然后用少量有标签数据进行微调。在MINST数据库实验中,这种方式显著提高了手写数字识别的准确性,达到98.215453%的测试准确率。实验证明,自我学习是一种有效的特征学习方法。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



