深度学习|Pytorch
文章平均质量分 72
澄鑫
从事计算机视觉领域算法的开发与部署工作,email:ycx971024@163.com
展开
-
【深度学习|目标检测】YOLO系列anchor-based原理详解
然后我们将这个预设好的grid点的左上角坐标和每个grid上的anchor给到模型最后的output,从output的最后一个维度拆分,拿到xy,wh,conf =(objectness,nc)一共三组结果,其中conf的结果是可以直接使用的,但是xy,wh还需要和我们预设好的grids和anchors,以及每个检测头的stride来得到最后的精确检测结果。正样本的匹配然后loss计算是为了让模型朝着更小的损失去迭代更新这样的权重,负样本的作用则是让模型的权重往更远离能检测出错误目标的权重方向迭代。原创 2025-03-14 17:22:21 · 1090 阅读 · 0 评论 -
【深度学习|目标跟踪】StrongSORT 详解(以及StrongSORT++)
在DeepSort中使用的是一个普通的kalman filter,即通过状态量直接估计下一时刻的状态,只有位置信息,而StrongSort中融合了目标的置信度信息,在计算噪声的均值和方差时,加入了track对应的检测目标的置信度信息,自适应的调整噪声。相比较于DeepSort中将每次的匹配上的目标的特征向量直接存储到对应track的gallery中,StrongSort的做法可以有效的平滑视频中间由于遮挡,噪声或其他不利因素导致的目标特征的衰减,使得在特征在匹配时的准确率能够有效提升。原创 2024-11-27 18:00:17 · 1462 阅读 · 0 评论 -
【深度学习|目标跟踪】多目标跟踪之训练reid网络
文件夹,在这下面准备若干个子文件夹,表示一共有多少类别,每个文件夹中准备好对应类的图片即可。按照分类任务那样准备数据集,即创建一个。原创 2024-11-21 16:57:11 · 671 阅读 · 0 评论 -
【深度学习|onnx】往onnx中写入训练的超参或者类别等信息,并在推理时读取
在训练完毕之后,我们先使用。原创 2024-11-21 11:57:17 · 408 阅读 · 0 评论 -
【深度学习|目标跟踪】DeepSort 详解
DeepSort使用了一个简单的卷积神经网络来提取检测框中的目标特征向量,这里的网络可以自己diy,也可以使用目前主流的现有的CNN,如ResNet18,ResNet50等。:运动特征与外观特征的作用是相辅相成的,试想一下,运动特征可以匹配上短期内的物体位移带来的目标位置变化,但是遮挡之后目标的位置中断导致无法匹配上,而外观特征可以搜寻过往的track的特征,来进行匹配。Sort的代价矩阵是由当前帧的运动特征与前一帧的运动特征的卡尔曼预测值进行iou的比对来产生的,这样做会导致较大的局限性。原创 2024-11-19 14:23:51 · 1732 阅读 · 0 评论 -
【深度学习|Pytorch】torchvision.datasets.ImageFolder详解
self,root: str,):图片存储的根目录,即存放不同类别图片文件夹的前一个路径。即对加载的这些图片进行的前处理的方式,这里可以传入一个实例化的torchvision.Compose()对象,里面包含了各种预处理的操作。对图片类别进行预处理,通常来说不会用到这一步,因此可以直接不传入参数,默认图像标签没有变换,如果需要进行标签的处理,同样可以传入一个实例化的torchvision.Compose()对象。表示图像数据加载的方式,通常采用默认的加载方式,原创 2024-04-03 12:28:31 · 2495 阅读 · 0 评论 -
【CUDA,TensorRT】cuda,cudnn,TensorRT官方下载链接
各版本cuda下载链接各版本cudnn下载链接原创 2024-01-25 21:53:09 · 220 阅读 · 0 评论 -
Pytorch常用api详解
成为Pytorch大师第一步~原创 2023-09-08 15:54:38 · 1152 阅读 · 0 评论
分享