深度学习|目标跟踪
文章平均质量分 85
目标跟踪算法
澄鑫
从事计算机视觉领域算法的开发与部署工作,email:ycx971024@163.com
展开
-
【深度学习|目标跟踪】StrongSORT 详解(以及StrongSORT++)
在DeepSort中使用的是一个普通的kalman filter,即通过状态量直接估计下一时刻的状态,只有位置信息,而StrongSort中融合了目标的置信度信息,在计算噪声的均值和方差时,加入了track对应的检测目标的置信度信息,自适应的调整噪声。相比较于DeepSort中将每次的匹配上的目标的特征向量直接存储到对应track的gallery中,StrongSort的做法可以有效的平滑视频中间由于遮挡,噪声或其他不利因素导致的目标特征的衰减,使得在特征在匹配时的准确率能够有效提升。原创 2024-11-27 18:00:17 · 1462 阅读 · 0 评论 -
【深度学习|目标跟踪】多目标跟踪之训练reid网络
文件夹,在这下面准备若干个子文件夹,表示一共有多少类别,每个文件夹中准备好对应类的图片即可。按照分类任务那样准备数据集,即创建一个。原创 2024-11-21 16:57:11 · 671 阅读 · 0 评论 -
【深度学习|目标跟踪】DeepSort 详解
DeepSort使用了一个简单的卷积神经网络来提取检测框中的目标特征向量,这里的网络可以自己diy,也可以使用目前主流的现有的CNN,如ResNet18,ResNet50等。:运动特征与外观特征的作用是相辅相成的,试想一下,运动特征可以匹配上短期内的物体位移带来的目标位置变化,但是遮挡之后目标的位置中断导致无法匹配上,而外观特征可以搜寻过往的track的特征,来进行匹配。Sort的代价矩阵是由当前帧的运动特征与前一帧的运动特征的卡尔曼预测值进行iou的比对来产生的,这样做会导致较大的局限性。原创 2024-11-19 14:23:51 · 1732 阅读 · 0 评论 -
【深度学习|目标跟踪】快速入门卡尔曼滤波!
卡尔曼滤波是一种最优估计的算法,我们可以把他理解成一个矫正算法,或者是一种插值算法。卡尔曼滤波可以根据我们对当前任务场景的运动学建模方程以及前一时刻的状态来估计下一时刻的状态。卡尔曼滤波被广泛应用于定位导航。原创 2024-08-09 15:31:03 · 1070 阅读 · 0 评论 -
【深度学习|目标跟踪】SSD+Sort实现多目标跟踪(Multiple Objections Track)!
就是图论中寻找最大匹配的算法,即要保证匹配到最多的边,并且保证这些边的加权和最小。关于匈牙利匹配算法,网上有十分多的教程,讲的也都很细致,这里我精简一下描述。原创 2024-07-30 16:46:23 · 480 阅读 · 0 评论
分享