
【深度学习|目标检测】YOLO系列anchor-based原理详解
然后我们将这个预设好的grid点的左上角坐标和每个grid上的anchor给到模型最后的output,从output的最后一个维度拆分,拿到xy,wh,conf =(objectness,nc)一共三组结果,其中conf的结果是可以直接使用的,但是xy,wh还需要和我们预设好的grids和anchors,以及每个检测头的stride来得到最后的精确检测结果。正样本的匹配然后loss计算是为了让模型朝着更小的损失去迭代更新这样的权重,负样本的作用则是让模型的权重往更远离能检测出错误目标的权重方向迭代。























