LLaMA-Factory环境搭建与运行示例

一、LLaMA-Factory

LLaMA-Factory项目

二、LLaMA-Factory环境搭建

1.基础环境搭建

基础环境需要

环境推荐版本
CUDA12.1
Python3.11
PyTorch2.4.0

具体安装可参考我的另一篇文章fairseq-0.12.2多机训练环境搭建

2.安装 LLaMA-Factory依赖

  1. 下载LLaMA-Factory项目:
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
  1. 安装torch版本
pip3 install -e ".[torch]" -i https://pypi.tuna.tsinghua.edu.cn/simple
  1. 修改不正确的环境
pip3 install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121 -i https://pypi.tuna.tsinghua.edu.cn/simple

三、LLaMA-Factory运行示例

1.使用命令行接口

  1. 配置文件llama3.yaml
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3

说明:

  • model_name_or_path为模型路径
  1. 运行命令行接口
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3.yaml

说明:

  • CUDA_VISIBLE_DEVICES为指定运行显卡号
  1. 运行效果
    运行命令行接口

2.使用浏览器界面

  1. 配置文件llama3.yaml
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3

说明:

  • model_name_or_path为模型路径
  1. 使用浏览器界面
CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_PORT=8123 llamafactory-cli chat examples/inference/llama3.yaml

说明:

  • CUDA_VISIBLE_DEVICES为指定运行显卡号
  • GRADIO_SERVER_PORT为方位的端口
  1. 后台显示效果
    后台显示效果

  2. 浏览器效果
    浏览器输入ip:port,port替换为GRADIO_SERVER_PORT的端口
    浏览器效果

3.使用训练方式批量推理

  1. 配置文件llama3.yaml
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct 

### method
stage: sft
do_predict: true
finetuning_type: full

### dataset
eval_dataset: test
template: llama3
cutoff_len: 4096
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: output
overwrite_output_dir: true

### eval
per_device_eval_batch_size: 1
predict_with_generate: true
do_sample: true
temperature: 0.6
top_p: 0.9
num_beams: 5

说明:

  • model_name_or_path为模型路径
  • eval_dataset为测试数据集名称
  • output_dir为输出文件路径
  • per_device_eval_batch_size为batch,一次批处理的数据数量
  • do_sample为使用sample推理
  • num_beams为beam大小
  1. 测试数据集准备
    data/dataset_info.json
 {
  "test": {
    "file_name": "test.json"
  },
  "test1": {
    "file_name": "test1.json"
  }
}

说明:

  • key为数据名称,eval_dataset使用该字段
  • file_name为数据文件路径
  1. 使用训练方式批量推理
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train llama3.yaml

说明:

  • CUDA_VISIBLE_DEVICES为指定运行显卡号
  1. 运行效果
    使用训练方式批量推理
### 关于 Autodl 和 LLaMA-Factory 的使用教程、安装及配置 #### 一、Autodl 平台简介 Autodl 是一种用于自动化机器学习模型训练的服务平台,支持用户上传自定义数据集并运行预设脚本完成模型训练任务。对于 LLaMA-Factory 而言,Autodl 提供了一个便捷的数据存储环境,允许开发者将数据集放置在其指定路径下以便后续处理[^3]。 #### 二、LLaMA-Factory 环境搭建流程 以下是基于引用内容整理的 LLaMA-Factory 安装配置指南: 1. **克隆项目仓库** 执行以下命令从 GitHub 获取最新版本的 LLaMA-Factory 源码: ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git ``` 2. **切换工作目录** 进入项目的根目录以准备下一步操作: ```bash cd LLaMA-Factory ``` 如果需要调整默认路径,则可以参照如下方式进入特定位置[^1]: ```bash cd \root\LLaMA-Factory ``` 3. **安装依赖项** 使用 `pip` 命令加载必要的 Python 库文件,确保开发环境中具备完整的功能模块支持: ```bash pip install -e .[metrics] ``` 此步骤会下载所有必需的第三方库以及额外选项中的评估工具包[^2]。 4. **导入个人数据集** 将自有数据集迁移至 Autodl 中对应的子文件夹内,具体目标地址应为: ```plaintext LLaMA-Factory/data/ ``` 数据结构需满足框架预期输入格式要求,通常包括但不限于 JSONL 或 CSV 文件形式。 #### 三、常见注意事项 - 在执行上述任一步骤前,请确认本地已正确安装 Git 版本控制系统以及 Python 解释器及其配套管理工具 Pip。 - 若遇到权限不足错误提示时,尝试附加 sudo 权限重新发起请求;或者通过虚拟隔离沙箱如 Conda 创建独立空间规避冲突风险。 ```python import os # 示例代码片段展示如何验证当前所在的工作区是否为目标路径 current_directory = os.getcwd() if current_directory.endswith('LLaMA-Factory'): print("位于正确的 LLaMA-Factory 主目录") else: raise ValueError(f"未处于有效目录 {current_directory}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莽夫搞战术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值