埃拉托斯特尼筛法(Sieve of Eratosthenes):这是一种高效的找出一定范围内所有素数的方法,通过预先筛选出所有素数,可以避免对每个数都进行素数判断
题
“这是我和其他选手比谁过题过得更快的游戏”
对于任何大于或等于4的偶数n,存在至少一对素数p1和p2,使得n = p1 + p2
没有人确定这个猜想是否真的成立。然而,对于给定的偶数,可以找到这样的一对素数(如果有的话)。这里的问题是编写一个程序,打印出满足给定偶数的猜想条件的所有素数对数。
一个偶数序列作为输入。可以有很多这样的数字。对应于每个数字,程序应输出上述对的数量。请注意,我们只统计不同的数对,因此不应将(p1,p2)和(p2,p1)分别计为两对不同的对。
输入格式:
在每个输入行中给出一个整数。你可以假定每个整数是偶数,并且大于或等于4且小于2的15次方。输入的结尾用数字0表示。
输出格式:
每个输出行应该包含一个整数。输出中不应出现其他字符。
输入样例:
在这里给出一组输入。例如:
6
10
12
0
输出样例:
在这里给出相应的输出。例如:
1
2
1
#include <stdio.h>
int main()
{
int n, i, j, x, count;
scanf("%d",&n);
while(n != 0)
{
int a[n];
for(i = 0; i < n; i++) //先将数组所有元素赋值为1
{
a[i] = 1;
}
for(i = 2; i <= n/2; i++) //通过筛选法求素数将不是素数下表的元素改为0
{
for(j = i; j*i < n; j++)
{
a[i*j] = 0;
}
}
count = 0; //计数每当两个数相加等于n时,count+1
for(i = 2; i <= n/2; i++)
{
if(a[i] == 1 && a[n-i] == 1)
count++;
}
printf("%d\n",count);
scanf("%d", &n);
}
}