埃拉托斯特尼筛法

埃拉托斯特尼筛法(Sieve of Eratosthenes):这是一种高效的找出一定范围内所有素数的方法,通过预先筛选出所有素数,可以避免对每个数都进行素数判断

“这是我和其他选手比谁过题过得更快的游戏”

对于任何大于或等于4的偶数n,存在至少一对素数p1和p2,使得n = p1 + p2
没有人确定这个猜想是否真的成立。然而,对于给定的偶数,可以找到这样的一对素数(如果有的话)。这里的问题是编写一个程序,打印出满足给定偶数的猜想条件的所有素数对数。

一个偶数序列作为输入。可以有很多这样的数字。对应于每个数字,程序应输出上述对的数量。请注意,我们只统计不同的数对,因此不应将(p1,p2)和(p2,p1)分别计为两对不同的对。

输入格式:
在每个输入行中给出一个整数。你可以假定每个整数是偶数,并且大于或等于4且小于2的15次方。输入的结尾用数字0表示。

输出格式:
每个输出行应该包含一个整数。输出中不应出现其他字符。

输入样例:
在这里给出一组输入。例如:
6
10
12
0

输出样例:
在这里给出相应的输出。例如:
1
2
1

#include <stdio.h>
 
int main()
{
    int n, i, j, x, count;
 
    scanf("%d",&n);
 
    while(n != 0)
    {
        int a[n];
        for(i = 0; i < n; i++)      //先将数组所有元素赋值为1
        {
            a[i] = 1;
        }
        for(i = 2; i <= n/2; i++)   //通过筛选法求素数将不是素数下表的元素改为0
        {
            for(j = i; j*i < n; j++)
            {
                a[i*j] = 0;
            }
        }
        count = 0;                   //计数每当两个数相加等于n时,count+1
        for(i = 2; i <= n/2; i++)
        {
            if(a[i] == 1 && a[n-i] == 1)
                count++;
        }
 
        printf("%d\n",count);
        scanf("%d", &n);
    }
 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值