HDU 1024

 

// http://acm.hdu.edu.cn/showproblem.php?pid=1024

//状态:   dp[i][j] --- 表示前j个数中的最大i段子段和,并且a[j]包涵于最后一个子段

//状态转移方程: dp[i][j]=max{dp[i][j-1]+A[j],dp[i-1][t]+a[j] (i-1<=t<n-m+i) }

//关于状态转移方程的解释:

  //       dp[i][j]由两种情况得到,    
   //      一、a[j]包涵于最后一个子段,这种情况的最大值就是dp[i][j-1]+a[j];
   //      二、a[j]就是最后一个子段,这种情况的最大值是 dp[i-1][t]+a[j] (i-1<=t<=n-m+i) 中

// 的最大值.

// 以下用滚动数组进行DP

// 在求 dp[i][j]时也顺便把 max{dp[i - 1][t]} ( i - 1 <= t < j) 求出来,这样的话

// 时间复杂度仅为 O(N*(N - M + 1)) , 空间为 O( N )  

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define MAXN 1000000
int num[MAXN+50],now[MAXN+50],pre[MAXN+50];

int max(int a,int b)
{
	if(a>b) return a;
	return b;
}


int main()
{
    int m,n,i,j,k,ans,max_pre;
    while(cin>>m>>n)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&num[i]);                    //数据太多所以用scanf 
        }
        memset(now,0,sizeof(now));
        memset(pre,0,sizeof(pre));
        for(i=1;i<=m;i++)
        {
            max_pre=(-1)*(MAXN*90);
            for(j=i;j<=n;j++)
            {
                now[j]=max(now[j-1]+num[j],pre[j-1]+num[j]);
                pre[j-1]=max_pre;
                if(now[j]>max_pre)
                {
                    max_pre=now[j];
                }
            }
        }
        cout<<max_pre<<endl;
    }
    return 0;
}


 

阅读更多
换一批

没有更多推荐了,返回首页