AGI时代正在加速到来,越来越多的企业CIO们意识到,企业进入AGI时代必须翻过三座大山,即:AI战略不明确、落地的应用场景匮乏、算力资源稀缺。如何帮助企业又好又快地解决这些难题,成为CIO工作的第一要务。
K哥作为嘉宾受邀参加神州数码的“数云原力大会2024”,欣喜地发现,CIO们苦苦思索的难题,似乎有了答案。《中庸》有云:“故君子尊德性而道问学,致广大而尽精微”,千行百业AI着陆的关键就在于,以企业应用场景为中心的“尽精微”,下面K哥跟你分享我的收获与思考。
01
AI原生赋能平台助力:Agent,大爆发
AI在企业着陆的方式一定是基于特定场景的,贴合企业应用场景打造的AI原生,能够帮助企业提质增效。那么,问题来了,企业的场景很多,究竟应该选择什么样的业务场景来打造AI原生的?
K哥的看法是,找到 “离钱最近”的场景,对于大多数企业来说营销就是离钱最近的,我们就以营销场景来举例,看看AI原生的销售赋能如何做。
我观察到,一个销售要面对的IT系统有十多个,每天要打开十多个系统去处理工作,是非常影响效率的,想想就觉得崩溃。Agent就可以很好地解决这个问题,通过新的语义交互模式,给销售人员呈现一个简单、直接的处理结果。
以神州问学为例,当销售人员要去拜访客户之前,可以召唤出拜访智能体—智小访,销售告诉智小访,“请帮我准备周五拜访客户王洋所需的材料”。基于公司的SOP, 智小访给出了拜访准备工作的任务规划分解:一是客户信息及行业动向;二是拜访对象背景分析;以及双方合作的历史及潜在机会发掘相关话题。
得到确认后,智小访就开始执行相关的任务:如去公司内部的CRM系统,以及外部招标网站、新闻网站等收集和查询信息,并给出摘要。
最后,智小访根据公司标准的销售SOP和最佳实践再次给出了重要的拜访提示:
1.作为第一次拜访,客户第一印象非常重要,要认真准备破冰话题;
2.注意抛出问题,让客户多说话;
3.要建立个人联系;
4.努力促成下一步,建议邀请客户参加汽车AI论坛;
通过构建类似这样的场景,如果整体销售的效率有10%的提升、企业的生产收益就会得到巨大的提升。
企业想要开发这样一个智能体,工程上是非常复杂的,需要对外打通各个业务系统的数据接口,对内整合多个知识源,还需要有高效的开发框架和规范。对于许多企业来说,是不具备这样的工程能力的,这就需要AI原生平台的赋能。
神州问学就是一个这样的AI原生赋能平台。也许你会好奇,这样的平台具备哪些能力?使用体验如何?怎样帮助企业打造AI原生应用?下面跟随K哥来探究。
02
一个AI原生赋能平台的“自我修养”
AI原生赋能平台必须具备三个功能模块,分别是:Agent工程、企业知识治理、以及模型训练与管理。三大功能模块独立工作、又相互协同,来实现AI原生的场景持续创新加速度。下面分别展开:
1)Agent工程。在平台在应用编排页挂载知识库,以支持通过RAG知识检索生成精准的信息;通过调用内部工具、外部插件的能力实现智能体的执行部分的操作。配置好的工具 ,将使用后台大模型识别用户意图,执行相关操作,整个会话过程都会进行长短期记忆存储操作,来支持多轮对话。
2)知识治理。将企业的私域知识注入或加载给大模型系统,是AI着陆企业应用场景的基础性工作。通过知识治理平台,文档布局拆解工具自动标注知识模型工具链,训练出企业专属知识自动化标注模型,然后实现知识治理的自动化。举例来说,一个医药行业的客户,有46万多份文档资料,使用知识治理平台后,人工干预的文档治理,从46万份缩减到1000份左右。
3)模型训练与管理。问学大模型管理平台,已经预接入了主流的MaaS模型并内置了数十个开源模型,企业根据需要灵活调用。
问学大模型训练平台内嵌最佳经验,提供灵活的训练配置选项,支持多种训练方法,支持多种高效微调训练方法,支持特定的注意力机制优化方法以及高速的推理方法等,提升算法团队工作效率。
问学可以根据LLM的模型特点以及GPU卡和多机多卡间互联的硬件特性,组成异构多机多卡的大模型虚拟算力集群,实现高效的分布式模型训练和推理。
以上,我们对神州问学的三大功能模块作了简单介绍,企业可以基于AI赋能平台层起步,来规范、形成各种技术框架和实施方法论。不断地沉淀、优化、迭代企业的私有模型集群,系统化地构建企业的私域知识库,从根本上去赋能企业的AI创新能力,来加速实现各类岗位场景。
在神州问学平台上,不仅可以搭建销售工作室,还可以搭建HR工作室、产研工作室、财务工作室、法务工作室等等,Agent将能够处理越来越多复杂的业务场景,帮助企业真正实现提质增效。
03
AI生产力革命:AI赋能的
软件研发全流程生产线
K哥从事软件研发工作20多年,深知企业数字化系统的复杂性,投入资源多、研发周期长、见效慢,这些问题一直困扰着我。AIGC的突破,让我看到了破题的关键。
借助多种AI技术的融合应用,打造强大的技术底座,从软件建模、代码生成、智能运维等场景,实现AI技术的落地,就可以大大提升软件的研发质效,帮助企业实现创新的降本增效和提质增速,以AI赋能数字化建设,构建新质生产力。
神州信息的“九天揽月”平台就是这样的数字底座。从产品设计、代码开发、代码测试、持续集成、应用运维等环节,对软件开发全生命周期进行赋能。通过NLP技术对产品文档、业务流程的识别,生成产品模型、流程模型、实体模型,挖掘出业务方的真实需求。独具特色的智能代码生成、智能自动测试、智能运维,将技术人员从“脏活累活”当中解放出来,做更有价值的事情。AI全面重塑研发工艺,端到端软件研发效率提升30%。
在企业的数字化建设当中,如何基于数字底座技术打造领先的智能系统呢?下面来看两个实践案例。
04
数智驱动,引领模式创新
神州控股政企产品技术总监张伟,分享了神州控股在昆山打造的公共数据运营平台的进展,也被称为“城市CTO模式”。他以当地开发的婚恋交友平台为例,面对婚恋市场信息不实、匹配不精准、存在情感诈骗等问题,神州控股以AI能力对接大量公共数据信息,并通过智能化的分析挖掘,极大提升了该婚恋平台的用户体验。
神州控股解决方案中心总经理崔学文,介绍了神州控股长春新区智算中心的实践,以仿真模型+知识图谱+人工智能为核心,构建的“算力、算据、算法”一体化算力中心架构,让智算中心的算力获得进一步增值,同时也让企业得到了更多实惠。以中药材产业为例,神州控股在智算中心平台中应用中药材大模型的中药循证证据生成,新适应症、新疗法挖掘以及质量评价体系构建等能力,为中药西释、老药新用创造了条件,为长春中药企业发展提供了智慧助力。
05
AI着陆,从微出发
AI技术的落地,关键在于从企业实际需求出发,从具体场景切入,以小见大。企业应以AI原生赋能平台为依托,构建起与业务深度融合的智能应用,实现质效双提升。正如爱因斯坦所言:“想象力比知识更重要。”在AI的助力下,企业将释放出更大的创新潜力和市场竞争力。
AI赋能不仅是技术的革新,更是企业战略思维的转变。通过AI原生平台,企业能够将知识资产转化为智能决策的支撑,推动业务流程的优化,逐步构建起企业的智能化能力。在AI的推动下,企业将迎来更广阔的发展前景,实现创新发展的新跨越。
扫码下载大会完整资料 | 扫码观看直播回放 | 扫码填写具体需求 |