YEN_CSDN的博客

如果真的相信什么,就要用尽全力去让它发生。

排序:
默认
按更新时间
按访问量

常用数据分析库Numpy、Scipy、Pandas 、matplotlib和nltk、igraph、Scikit-learn 简介

Numpy功能:提供常用的数值数组、矩阵等函数 优点:是基于向量化的运算; 进行数组运算时Numpy数组比list效率高示例:Scipy功能: 是一种使用NumPy来做高等数学、信号处理、 优化、统计的扩展优点:示例:Pandas功能:是一种构建于Numpy的高级数据结构和精巧 工具,快速简单的处...

2017-02-15 17:17:24

阅读数:1368

评论数:0

Anaconda的安装和基本使用

Anaconda的简介要利用 Python 进行科学计算,就需要一一安装所需的模块, 而这些模块可能又依赖于其它的软件包或库,安装和使用起来相对麻烦。Anaconda 就是将科学计算所需要的模块都编译好,然后打包以发行版的形式供用户使用的一个常用的科学计算环境。 它包含了众多流行的科学、数学、工...

2017-02-15 16:38:23

阅读数:666

评论数:0

NumPy的ndArray——多维数组对象

创建ndarray使用array函数,它接受一切序列型的对象,然后产生一个新的含有传入数据的NumPy数组。 序列嵌套,将会被转为一个多维数组 如果不显示指明,np.array会尝试为数组推断一个较为合适的数据类型,数据类型保存在一个dtype对象中 除了np.array外,一些函数也可以创...

2017-01-30 23:01:44

阅读数:1583

评论数:0

利用Python Pandas进行数据预处理-数据清洗

数据缺失、检测和过滤异常值、移除重复数据 数据缺失 数据缺失在大部分数据分析应用中都很常见,Pandas使用浮点值NaN表示浮点和非浮点数组中的缺失数据,他只是一个便于被检测出来的数据而已。from pandas import Series,DataFramestring_data=Series...

2016-12-03 17:54:04

阅读数:49484

评论数:0

利用Python Pandas进行数据预处理-Pandas基本的数据结构

概述 Pandas是Python的一个数据分析包,Pandas最初被作为金融数据分析工具而开发出来,因此,Pandas为时间序列提供了很好的支持。Pandas是基于Numpy构建的含有更高级数据结构和工具的数据分析包。Pandas的数据结构: Series:一维数组,与Numpy中的一位Arra...

2016-12-03 16:04:50

阅读数:3861

评论数:0

Python数据预处理概述

Python数据预处理概述对于数据分析而言,数据是显而易见的核心。但是并不是所有的数据都是有用的,大多数数据参差不齐,层次概念不清淅,数量级不同,这会给后期的数据分析和数据挖掘带来很大的麻烦,所以有必要进行数据预处理。数据预处理是指在对数据进行数据挖掘之前,先对原始数据进行必要的清洗、集成、转换、...

2016-11-29 22:03:04

阅读数:2334

评论数:0

Python数据获取-文件、word、Excel、数据库

数据获取是进行数据分析与数据挖掘的基础,而数据预处理是影响数据挖掘结果好坏的关键因素。Python数据获取 数据获取是指从数据源采集数据,微数据分析与数据挖掘做数据准备的工作。从键盘获取数据>>>value=input() >?"YEN" >&g...

2016-11-29 17:28:19

阅读数:2792

评论数:0

数据科学领域常用的五个Python包

Numpy Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。Numpy的功能: N维数组,一种快速、高效使用内存的多维数组,他提供矢量化数学运算。 可以不需要使用循环,就能对整个数组内的数据进行标准数...

2016-11-27 14:39:09

阅读数:10020

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭