yeting067
码龄10年
关注
提问 私信
  • 博客:26,208
    社区:2,220
    28,428
    总访问量
  • 3
    原创
  • 837,042
    排名
  • 1
    粉丝
  • 0
    铁粉

个人简介:Undergraduate: Applied Mathematics Have great interest in Machine Learning, Statistics, Data Science.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2014-07-17
博客简介:

yeting067的专栏

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    0
    当月
    0
个人成就
  • 获得4次点赞
  • 内容获得0次评论
  • 获得5次收藏
创作历程
  • 13篇
    2014年
TA的专栏
  • Python
    7篇
  • pymongo
    1篇
  • scikit-learn
    5篇
  • http
    1篇
  • nltk
    2篇
  • ML
    2篇
  • Algorithm
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Tricks while feature_extracting text: Extend the vectorizer with NLTK's stemmer

This is a reading note from 'Building Machine learning System with Python'.@P59Train_data=           ['This is a toy post about machine learning. Actually, it contains not much interesting stuff.'
原创
发布博客 2014.08.22 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

An example in sklearn: Faces recognition example using eigenfaces and SVMs

Some basic concept:F1 score:
原创
发布博客 2014.08.18 ·
1045 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

决策树剪枝的方法与必要性

zhuan1 决策树剪枝的必要性本文讨论的决策树主要是基于ID3算法实现的离散决策树生成。ID3算法的基本思想是贪心算法,采用自上而下的分而治之的方法构造决策树。首先检测训练数据集的所有特征,选择信息增益最大的特征A建立决策树根节点,由该特征的不同取值建立分枝,对各分枝的实例子集递归,用该方法建立树的节点和分枝,直到某一子集中的数据都属于同一类别,或者没有特征可以在用于对数据进行分割。ID
转载
发布博客 2014.08.16 ·
7234 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

转贴一篇关于NLTK的中文文章

加载中…小森的拇指书屋http://blog.sina.com.cn/lovelyls[订阅][手机订阅]    这是一篇介绍NLTK的文章,原载于这里,值得一看,唯一不足之处在于作者对于一些名词的解释略显业余,同时对于最新版的NLTK,我们在代码上的实现和原文上还是有些出入的。
转载
发布博客 2014.08.12 ·
1153 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

feature_extraction

Cloga的互联网笔记ArchiveCategoriesPagesTags关于Clogasklearn文本特征提取 19 January 2014 文本特征提取词袋(Bag of Words)表征文本分析是机器学习算法的主要应用领域。但是,文本分析的原始数据无法直接丢给算法,这些原始数据是一组符号,因为大多数算法期望的输入是固定长
转载
发布博客 2014.08.11 ·
1526 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

python + request + lxml的几个例证

From:   http://www.educity.cn/wenda/81465.html
转载
发布博客 2014.08.07 ·
1246 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python requests的安装与简单运用

From:   http://www.zhidaow.com/post/python-requests-install-and-brief-introduction
转载
发布博客 2014.08.07 ·
612 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HTTP Request header

From   http://www.cnblogs.com/lexus/archive/2012/02/21/2360944.html
转载
发布博客 2014.08.07 ·
542 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python scikit-learn机器学习工具包学习笔记:feature_selection模块

sklearn.feature_selection模块的作用是featureselection,而不是feature extraction。Univariate featureselection:单变量的特征选择单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要。剔除那些不重要的指标。sklearn.feature_selectio
转载
发布博客 2014.08.07 ·
2693 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Python scikit-learn机器学习工具包学习笔记:cross_validation模块

From:http://blog.sina.com.cn/s/blog_6a90ae320101a5rc.htmlsklearn.cross_validation模块的作用顾名思义就是做crossvalidation的。crossvalidation大概的意思是:对于原始数据我们要将其一部分分为train data,一部分分为testdata。train data用
转载
发布博客 2014.08.07 ·
7800 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

python中xrange和range的异同

range    函数说明:range([start,] stop[, step]),根据start与stop指定的范围以及step设定的步长,生成一个序列。range示例: >>> range(5) [0, 1, 2, 3, 4] >>> range(1,5) [1, 2, 3, 4] >>> range(0,6,2)[0, 2, 4]xrange    函数说明
转载
发布博客 2014.08.06 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PyMongo基本使用

引用PyMongo>>> import pymongo 创建连接Connection>>> import pymongo>>> conn = pymongo.Connection('localhost',27017)或>>> from pymongo import Connection>>> conn = Connec
转载
发布博客 2014.08.04 ·
505 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

The difference between read, readline, readlines in Python

A simple test could clearly illustrate the difference.#
原创
发布博客 2014.07.22 ·
601 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏