题目大意
给你 n n n 个数,求一个区间和区间的值,定义区间的值为区间内所有数之和乘以区间最小值,输出区间的值以及区间的左右端点
解题思路
我们考虑每个数作为所在区间的最小值时,这个区间的左右端点是什么。
这时,我们可以正反跑两次单调栈,分别得到这个数作为区间最小值时,这个区间的左右端点。
考虑正向跑单调栈求区间左端点。维护一个上升的单调栈
如果当前元素比栈顶大,直接push进去,这个数的区间左端点就是栈顶元素的下标+1
如果当前元素小于等于栈顶元素,一直pop栈直到满足当前元素比栈顶大,然后取栈顶元素下标+1
反向跑单调栈得到区间右端点,有一个小细节,我们可以先push一个元素进去,使得我们的操作统一化,见代码
Code
#include <iostream>
#define ll long long
#define qc ios::sync_with_stdio(false); cin.tie(0);cout.tie(0)
#define fi first
#define se second
#define PII pair<int, int>
#define PLL pair<ll, ll>
#define pb push_back
using namespace std;
const int MAXN = 2e5 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9 + 7;
int n;
PLL st[MAXN];
int cnt;
ll a[MAXN], pre[MAXN];
int l[MAXN], r[MAXN];
void solve(){
cin >> n;
for(int i = 1; i <= n; i++){
cin >> a[i];
pre[i] = pre[i-1] + a[i];
}
cnt = 0;
for(int i = 1; i <= n; i++){
while(cnt && st[cnt].se >= a[i]){
cnt--;
}
l[i] = st[cnt].fi + 1;
st[++cnt] = {i, a[i]};
}
cnt = 0;
st[++cnt] = {n+1, -1};
for(int i = n; i >= 1; i--){
while(cnt && st[cnt].se >= a[i]) cnt--;
r[i] = st[cnt].fi - 1;
st[++cnt] = {i, a[i]};
}
// for(int i = 1; i <= n; i++) cout << l[i] << " "; cout << endl;
// for(int i = 1; i <= n; i++) cout << r[i] << " "; cout << endl;
ll ansl = 1, ansr = 1, ans = 0;
for(int i = 1; i <= n; i++){
if(a[i] * (pre[r[i]] - pre[l[i] - 1]) > ans){
ans = a[i] * (pre[r[i]] - pre[l[i] - 1]);
ansl = l[i];
ansr = r[i];
}
}
cout << ans << endl << ansl << " " << ansr << endl;
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
qc;
int T;
// cin >> T;
T = 1;
while(T--){
solve();
}
return 0;
}
More
感谢npy的分享,好题
该博客介绍了一道编程题目,要求求解一个数列中,区间内所有数之和乘以区间最小值的最大值,并给出区间左右端点。解题策略是使用单调栈,正向和反向遍历数列来找到每个数作为区间最小值时的最小区间。最终通过比较找出最大乘积及其对应区间。
3844

被折叠的 条评论
为什么被折叠?



