集成学习是通过构建并结合多个学习器来完成学习任务,如下图,集成学习通过将多个学习器结合,获得比单一学习器显著优越的泛化性能。集成学习分为同质集成和异质集成,如果个体学习器全是一种算法称为同质集成,如果由不同算法生成,称为异质集成。基学习器是对于同质集成说的。
要获得好的集成,个体学习器应该“好而不同”。如下图,图1中每个分类器只有66.6%的精度,集成之后精度为100%,图2中集成之后性能没有提高,图3中每个分类器只有33.3%的精度,集成之后变得更糟。
-
目前集成学习方法大致分为两大类。
- 个体学习器间存在强依赖关系、必须串行生成得序列化方法(Boosting)
- 个体学习器间不存在强依赖关系、可同时生成得并行化方法(Bagging和随机森林)
Boosting
Boosting的原理图如下:
Boosting族算法最著名得代表是Adaboost。Adaboost算法流程如下,详细流程见集成学习之Adaboost算法原理小结,另外梯度提升树(GBDT)原理小结
Bagging的原理图如下:
- Bagging采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再将这些及学习器进行结合。
- 采样的方法使用自助采样法。
- 从偏差-方差分解的角度看,Bagging主要关注降低方差,因此它在不剪枝决策树、神经网络等易受样本扰动的学习器上效果更明显。
随机森林
随机森林是Bagging的一个扩展变体,是以决策树为及学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入随机属性选择。具体来说,传统决策树在选择划分属性时是在当前结点的属性集合(假定有d 个属性)中选择一个最优属性;而在RF 中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分. 这里的参数k 控制了随机性的引入程度;若令k=dk = dk=d, 则基决策树的构建与传统决策树相同;若令k = 1 , 则是随机选择一个属性用于划分; 一般情况下,推荐值;
平均法
投票法
对于分类任务通常使用投票法。
学习法
当训练数据很多时,一种更为强大的结合策略就是“学习法”,即通过一个学习器来进行结合。Stacking是学习法的典型代表。Stacking 先从初始数据集训练出初级学习器,然后"生成"一个新数据集用于训练次级学习器.在这个新数据集中,初级学习器的输出被当作样例输入特,?而初始样本的标记仍被当作样例标记. Stacking 的算法描述如图。