论文阅读笔记 在实例级检测任务(例如对象检测)中,降低输入分辨率是提高运行时效率的容易选择。然而,这种会极大地降低检测性能。本文侧重于通过从高分辨率或多分辨率模型中提取知识来提高低分辨率模型的性能。通过移动特征金字塔位置来探索不同输入分辨率模型之间的空间对齐特征图的想法,并引入对齐的多尺度训练来训练一个多尺度教师,可以将其知识提取到低分辨率学生。提出了交叉特征级融合来动态融合教师的多分辨率特征,以更好地指导学生。在 mAP 方面优于后者的低分辨率模型 2.1% 到3.6%。
图像与视频处理 逐段线性变换将原始图像的灰度级映射到不同的灰度级区域,以调整图像的对比度。例如,可以将灰度级0到50映射到0到100,将灰度级50到150映射到100到200,将灰度级大于150的映射到200到255。灰度变换是一种将图像的灰度级进行映射或转换的操作,常用于调整图像的对比度、亮度或者突出特定特征。采用高通滤波的方法让高频分量顺利通过,使低频分量得到抑制,就可增强高频分量,使图像的边缘或线条变的清晰,实现图像的锐化。高通滤波特点:高通滤波在增强了边缘/轮廓的同时,丢失了图像的层次,图像会变的粗糙。
pytorch霹雳巴拉——图像分类篇 →目标检测→…一步步学习用pytorch实现深度学习在cv上的应用,并做笔记整理和总结。参考内容来自:up主的b站链接:https://space.bilibili.com/18161609/channel/indexup主将代码和ppt都放在了github:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing。
pytorch刘二大人——第二遍 pytorch实现简单的卷积网络——刘二大人课程:https://www.bilibili.com/video/BV1Y7411d7Ys/?spm_id_from=333.999.0.0
深度学习本地环境配置步骤(pytorch、tensorflow框架) 深度学习本地环境配置步骤(pytorch、tensorflow框架)VscodeAnacondaCudaCudnnPytorch(tensorflow)后三者应考虑版本pytorch与cuda版本 参考链接:https://pytorch.org/get-started/previous-versions/其他整理可以借鉴的网站:https://blog.csdn.net/qq_40992227/article/details/113705112https://www.cnblogs