tensorflow BERT学习记录--使用自己的训练集--run_classifier.py

 tensorflow bert github 上有tensorflow bert的源代码和预训练模型的下载链接

该仓库里的run_classifier.py 用于fine-tuning以及推理,官方的BERT库里,只需要修改run_classifier.py即可完成对新数据集的fine-tuning和推理, 该文件里的代码主要是以下几块:

  • 训练参数Flags的定义, 没什么好说的, 官方的注释很容易理解,

在运行 BERT 分类任务代码时,如果出现 `ModuleNotFoundError: No module named 'numpy'` 错误,说明当前 Python 环境中缺少 `numpy` 模块。以下是几种常见且有效的解决方法,适用于不同操作系统和环境配置: ### 1. 使用 pip 安装 numpy 如果系统中已安装 `pip`,可以直接使用以下命令安装 `numpy`: ```bash pip install numpy ``` 如果使用的是 Python 3,并且 `pip` 命令无效,可以尝试使用 `pip3`: ```bash pip3 install numpy ``` 如果提示 `Command 'pip3' not found`,可以先安装 `python3-pip` 包[^1]: ```bash sudo apt install python3-pip ``` 然后再次尝试使用 `pip3 install numpy` 安装 numpy。 ### 2.PyCharm 中安装 numpy 如果是在 PyCharm 中运行代码,可以在内置终端中安装 `numpy`。打开 PyCharm 的 Terminal 面板,执行以下命令: ```bash pip install numpy ``` 如果 PyCharm 使用的是虚拟环境(venv),确保激活了正确的虚拟环境后再执行安装命令。 ### 3. 手动下载并安装 numpy 如果网络环境受限,可以手动下载 `numpy` 的安装包并进行本地安装: 1. 访问 [PyPI](https://pypi.org/project/numpy/) 页面下载 `.whl` 文件。 2. 将文件保存到本地目录。 3. 使用 `cd` 命令进入该目录并执行安装命令: ```bash pip install numpy-<version>-cp<python_version>-cp<python_version>-win_amd64.whl ``` 请根据实际下载的文件名替换 `<version>` 和 `<python_version>`。 ### 4. 安装 get-pip.py使用 pip 安装 numpy 如果系统中没有安装 `pip`,可以先下载 `get-pip.py` 文件进行安装: 1. 下载 `get-pip.py` 文件并保存到 Python 安装目录: ``` https://bootstrap.pypa.io/get-pip.py ``` 2. 打开命令行工具,进入 Python 安装目录并执行以下命令: ```bash python get-pip.py ``` 3. 安装完成后,使用 `pip` 安装 `numpy`: ```bash python -m pip install numpy ``` ### 5. 检查 Python 环境和路径配置 如果以上方法均无效,可能是当前 Python 环境的路径配置错误,或者使用了错误的 Python 解释器。可以通过以下命令检查当前使用Python 和 pip 版本: ```bash which python which pip ``` 在 PyCharm 中,也可以通过设置界面检查当前项目使用的解释器是否正确。路径错误可能导致安装的模块无法被识别。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值