弹性力学问题的求解方法与应变能分析
1. 近似求解方法
在弹性力学问题中,精确解析解往往难以求得,因此人们开展了大量工作来开发近似解。其中,变分方法是一个重要的研究领域,它与能量定理相关。该方法的主要思想是将弹性力学场方程与寻找特定积分泛函极值的变分问题联系起来。
1.1 Ritz 方法
Ritz 方法采用一组近似函数来求解弹性力学问题,通过确定特定能量积分的驻值来实现。这组近似函数需满足问题的边界条件,但只能近似使能量积分达到极值。通过在近似解集中包含更多项,可以提高该方法的精度。不过,由于难以找到适用于复杂几何问题的近似函数,变分技术在解决一般问题方面的贡献有限,但在有限元方法中有着重要应用。
2. 数值求解方法
过去几十年里,数值方法在解决复杂几何形状的弹性力学问题中发挥了主要作用。以下是几种重要的数值方法:
|方法|原理|优点|缺点|
| ---- | ---- | ---- | ---- |
|有限差分法(FDM)|用差商代替控制场方程中的导数,通过重复应用该表示建立关于未知网格点值的代数方程组|经典方法,有一定理论基础|处理复杂形状区域时不准确,可通过坐标变换技术解决|
|有限元法(FEM)|将研究对象划分为有限个称为单元的子域,对每个单元内未知变量的变化做出假设,通过离散化过程建立关于未知节点值的代数方程组|能处理复杂形状的问题域,是实用工具|计算量较大|
|边界元法(BEM)|基于弹性力学控制方程的积分形式,将积分方程转化为仅含边界未知量的形式,再用有限元方法的概念求解|对于无限或非常大的域以及只需要边界信息的情况有优势,方程组通常比 FEM 内部离散化生成的小|对内
超级会员免费看
订阅专栏 解锁全文
48

被折叠的 条评论
为什么被折叠?



