数据库管理380期 2025-10-28
数据库管理-第380期 国产数据库的下一步(20251028)
作者:胖头鱼的鱼缸(尹海文)
Oracle ACE Pro: Database
PostgreSQL ACE
10年数据库行业经验
拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证
墨天轮MVP,ITPUB认证专家
圈内拥有“总监”称号,非著名社恐(社交恐怖分子)
公众号:胖头鱼的鱼缸
CSDN:胖头鱼的鱼缸(尹海文)
墨天轮:胖头鱼的鱼缸
ITPUB:yhw1809
IFClub:胖头鱼的鱼缸
除授权转载并标明出处外,均为“非法”抄袭

上周末行程很赶:周六早飞上海,周日晚返程成都,今天便接着投入工作。此行核心是受邀参加海量数据1024开发者日暨产品发布会后的闭门顾问交流会,会上汇聚了行业大佬、高校骨干与海量数据库的技术专家,针对国产数据库的发展方向、技术实现、目标落地等话题,展开了激烈且富有建设性的技术讨论。由于是闭门会议,具体涉密内容不便公开,本文仅对会上及会后可公开的内容做总结,并分享一些个人感想。

1 功能
会上讨论最集中的是数据库功能,尤其聚焦AI时代数据库对AI的支撑价值,具体包括:
- AI向量数据支持(涵盖向量数据的维度、类型,以及稠密、稀疏向量适配)
- AI向量检索(涉及算法选型、索引设计等)
- 文本与向量检索融合(包括算法创新与性能优化,德哥的文章对此有详细解读)
- 数据库内置向量嵌入能力(支持自动化同步向量嵌入与文本插入)
- 数据标注
- RAG
- MCP
- …
当然,除AI相关能力外,数据库的基础核心能力同样不可或缺:
- 多模支持(覆盖文本、JSON、图、GIS、向量等数据类型)
- 多租户能力(实现硬件资源的整合与高效利用)
- 云原生适配(需结合实际场景判断)
- 快速开发能力
- …
数据库功能的完整性,直接决定其能否便捷支撑业务需求 —— 避免使用国产数据库后,需大量调整代码才能实现原有功能,甚至不得不舍弃部分业务需求。这也是降低数据库国产化迁移难度与成本投入的关键手段。不过,受限于不同数据库产品的定位差异,且国产数据库大多起步较晚,加之近几年数据库功能迭代速度极快,要实现功能全面覆盖,仍是一件颇具挑战的事。
2 性能
这部分思考源于会后返程酒店的车上——我与德哥闲聊时,他提到一个观点:部分国产数据库仍在关注相对小众的优化方向,即基于对硬件的深度理解,充分利用并适配CPU、内存、网络等硬件优势来优化数据库。但很多时候,这类优化投入大、提升有限,远不如升级更优质或更大规模的硬件来得直接。
关于这个话题,我此前也与其他行业老师交流过,我的结论是需结合具体场景判断:在硬件配置固定的场景下(例如某业务场景TPS+QPS达1万),即便数据库通过硬件优化仅实现1%的性能提升,每秒可释放的CPU资源(即减少的CPU占用)也相当可观,进而带来一系列隐性提升:
- 降低语句执行时间,提升业务处理效率
- 降低CPU占用率,减少因CPU高负载引发的资源争用与等待
- 进一步提升数据库的业务承载上限
- …
在我看来,当前国产数据库的功能短板并非显著劣势 —— 即便存在不足,大部分原本依赖数据库实现的功能,仍可通过业务调整来替代,只是这种方式的成本较高。真正的核心挑战在于:如何在维持原有硬件规模不变,或仅小幅升级硬件的前提下,实现与原有系统相近的性能表现。要达成这一目标,或许需要从最底层的硬件,到操作系统,再到数据库本身进行全链路深耕,不放过任何一个可优化的性能提升点。
3 一点瞎想
延续和德哥的车上闲聊,我们还聊到了公有云建设对IT国产化进程的关键影响。若当年国内大厂没有一个跟一个的集体入局公有云建设,反而让国际主流公有云厂商全面占领国内市场,如今我们的国产化推进恐怕会难上加难,甚至陷入“无从下手”的被动局面。
尽管当前不少国内公有云厂商仍在学习、跟进国际主流技术,国内甚至存在层层跟进的技术链条,看似与领先水平仍有差距,但关键在于“掌握主动权”——公有云作为IT基础设施的核心环节,一旦牢牢掌握在自己手中,我们才能依托自主积累的技术实力,为后续国产化深化筑牢根基。
这其中的价值体现在多个层面:
- 为上层国产软件铺路:自主公有云能为国产数据库、中间件等软件提供适配的底层运行环境,避免因依赖外部基础设施而受限于技术接口不兼容、数据安全管控受限等风险。
- 提升国产化响应效率:当业务提出国产化调整需求时,无需等待外部厂商配合,可直接联动底层云资源与上层国产软件协同优化,大幅缩短落地周期。
- 规避“卡脖子”风险:若是当初让外部厂商垄断基础设施,如今无论是国产数据库的部署,还是关键数据的存储安全,都可能面临技术或规则上的被动限制。
这点还是感谢当年坚持入局公有云的大佬们。
总结
参加海量数据闭门交流会有感。
老规矩不知道写了些啥。
国产数据库的AI演进与性能突破
256

被折叠的 条评论
为什么被折叠?



