整数划分
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,
其中n1≥n2≥…≥nk≥1,k≥1。
正整数n的这种表示称为正整数n的划分。求正整数n的不
同划分个数。
例如正整数6有如下11种不同的划分:
6;
5+1;
4+2,4+1+1;
3+3,3+2+1,3+1+1+1;
2+2+2,2+2+1+1,2+1+1+1+1;
1+1+1+1+1+1。
-
输入
- 第一行是测试数据的数目M(1<=M<=10)。以下每行均包含一个整数n(1<=n<=10)。 输出
- 输出每组测试数据有多少种分法。 样例输入
-
1 6
样例输出
-
11
思路:动态规划:我们用q[n][m]表示整数n (零数不超过m)的划分数。
①当n = m 时,q[n][n]=q[n][n-1]+1;
②当n < m 时,q[n][m]=q[n][n];
③当n > m 时, q[n][m]=q[n][m-1]+q[n-m][m];
代码如下:(递推版)
#include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
using namespace std;
#define n 11
int main()
{
int q[n+1][n+1];
int i,j;
for(i=1;i<=n;i++)
q[i][1]=q[1][i]=1;
for(i=2;i<=n;i++)
for(j=2;j<=n;j++)
{
if(i==j)
q[i][i]=q[i][i-1]+1;
else if(i<j)
q[i][j]=q[i][i];
else
q[i][j]=q[i][j-1]+q[i-j][j];
}
int m,T;
cin>>T;
while(T--)
{
cin>>m;
cout<<q[m][m]<<endl;
}
return 0;
}
(递归版)
#include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
using namespace std;
int fac(int n,int m)
{
if(n==1||m==1)return 1;
if(n==m)return 1+fac(n,n-1);
if(n>m) return fac(n,m-1)+fac(n-m,m);
return fac(n,n);//n<m
}
int main()
{
int n,T;
cin>>T;
while(T--)
{
cin>>n;
cout<<fac(n,n)<<endl;
}
return 0;
}
第二种解法:
按照楼下weiwei2012start 的说法:研究了一下:这个整数划分其实就是一个多重背包问题。
具体解法如下:
一个数n可以看成背包容量为n的背包,f[n]由n个价值和花费分别为i 的物品,能装满背包的种类数,而每种物品的数量不限,正好是一个完全背包问题。
int f[1000];
memset(f,0,sizeof(f));
f[0]=1;//注意这里很重要
for(int i=1; i<=n; i++)
for(int j=i; j<=n; j++)
f[j]=f[j]+f[j-i];
这下大大提高了效率。
f[121]=2056148051;
f[500]=2300165032574323995027;