Python多线程编程方式2 threading库的介绍

http://www.cnblogs.com/huxi/archive/2010/06/26/1765808.html

Python多线程编程方式2 threading库的介绍


1. threading

返回当前的线程变量。

threading.currentThread()

返回一个包含正在运行的线程的list

正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 

threading.enumerate()

返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading.activeCount()

threading模块提供的类:  

Thread,  Lock,  Rlock,  Condition,  [Bounded]Semaphore,  Event,  Timer,  local.



2. Thread

Thread是线程类,有两种使用方法,直接传入要运行的方法或从Thread继承并重载run()

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example1.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. import threading   
  6. # 方法1:将要执行的方法作为参数传给Thread的构造方法  
  7. def func():  
  8.     print('func() passed to Thread')  
  9.       
  10. t = threading.Thread(target=func)  
  11. t.start()  


##################################################

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example2.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. import threading   
  6.   
  7. # 方法2:从Thread继承,并重写run()  
  8. class MyThread(threading.Thread):  
  9.     def run(self):  
  10.         print('MyThread extended from Thread')  
  11.    
  12. t = MyThread()  
  13. t.start()  

构造方法: 

Thread(group=None, target=None, name=None, args=(), kwargs={}) 

group:  线程组,目前还没有实现,库引用中提示必须是None; 

target:  要执行的方法; 

name:  线程名; 

args/kwargs:  要传入方法的参数。

实例方法: 

isAlive():  返回线程是否在运行。正在运行指启动后、终止前。 

get/setName(name):  获取/设置线程名。 

is/setDaemon(bool):  获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。 

start():  启动线程。 

join([timeout]):  阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example3.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #线程join例子  
  6. import threading  
  7. import time  
  8.    
  9. def context(tJoin):  
  10.     print('in threadContext.')  
  11.     tJoin.start()  
  12.       
  13.     # 将阻塞tContext直到threadJoin终止。  
  14.     tJoin.join()  
  15.       
  16.     # tJoin终止后继续执行。  
  17.     print('out threadContext.')  
  18.    
  19. def join():  
  20.     print('in threadJoin.')  
  21.     time.sleep(1)  
  22.     print('out threadJoin.')  
  23.    
  24. tJoin = threading.Thread(target=join)  
  25. tContext = threading.Thread(target=context, args=(tJoin,))  
  26.    
  27. tContext.start()  
  28.   
  29. 运行结果:  
  30. in threadContext.   
  31. in threadJoin.   
  32. out threadJoin.   
  33. out threadContext.  

3. Lock


        Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法: 

Lock()

实例方法: 

acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。 

release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example4.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: Lock的使用  
  6. import threading  
  7. import time  
  8.   
  9. data = 0  
  10. lock = threading.Lock()  
  11.    
  12. def func():  
  13.     global data                 #说明是全局变量  
  14.     print('%s acquire lock...' % threading.currentThread().getName())  
  15.   
  16.     # 调用acquire([timeout])时,线程将一直阻塞,  
  17.     # 直到获得锁定或者直到timeout秒后(timeout参数可选)。  
  18.     # 返回是否获得锁。  
  19.     if lock.acquire():  
  20.         print('%s get the lock.' % threading.currentThread().getName())  
  21.         data += 1  
  22.         time.sleep(2)  
  23.         print('%s release lock...' % threading.currentThread().getName())  
  24.   
  25.         # 调用release()将释放锁。  
  26.         lock.release()  
  27.   
  28. t1 = threading.Thread(target=func)  
  29. t2 = threading.Thread(target=func)  
  30. t3 = threading.Thread(target=func)  
  31. t1.start()  
  32. t2.start()  
  33. t3.start()  
  34.   
  35. 输出:  
  36. Thread-1 acquire lock...  
  37. Thread-1 get the lock.  
  38. Thread-2 acquire lock...  
  39. Thread-3 acquire lock...  
  40. Thread-1 release lock...  
  41. Thread-2 get the lock.  
  42. Thread-2 release lock...  
  43. Thread-3 get the lock.  
  44. Thread-3 release lock...  


4. RLock


RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法: 

RLock()

实例方法: 

acquire([timeout])/release(): Lock差不多。

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example5.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: RLock 的使用  
  6. # encoding: UTF-8  
  7. import threading  
  8. import time  
  9.    
  10. rlock = threading.RLock()  
  11.    
  12. def func():  
  13.     # 第一次请求锁定  
  14.     print('%s acquire lock...' % threading.currentThread().getName())  
  15.     if rlock.acquire():  
  16.         print('%s get the lock.' % threading.currentThread().getName())  
  17.         time.sleep(2)  
  18.           
  19.         # 第二次请求锁定  
  20.         print('%s acquire lock again...' % threading.currentThread().getName())  
  21.         if rlock.acquire():  
  22.             print('%s get the lock.' % threading.currentThread().getName())  
  23.             time.sleep(2)  
  24.           
  25.         # 第一次释放锁  
  26.         print('%s release lock...' % threading.currentThread().getName())  
  27.         rlock.release()  
  28.         time.sleep(2)  
  29.           
  30.         # 第二次释放锁  
  31.         print('%s release lock...' % threading.currentThread().getName())  
  32.         rlock.release()  
  33.    
  34. t1 = threading.Thread(target=func)  
  35. t2 = threading.Thread(target=func)  
  36. t3 = threading.Thread(target=func)  
  37. t1.start()  
  38. t2.start()  
  39. t3.start()  
  40.   
  41. 输出  
  42. Thread-1 acquire lock...  
  43. Thread-2 acquire lock...  
  44. Thread-3 acquire lock...  
  45. Thread-1 get the lock.  
  46. Thread-1 acquire lock again...  
  47. Thread-1 get the lock.  
  48. Thread-1 release lock...  
  49. Thread-1 release lock...  
  50. Thread-2 get the lock.  
  51. Thread-2 acquire lock again...  
  52. Thread-2 get the lock.  
  53. Thread-2 release lock...  
  54. Thread-2 release lock...  
  55. Thread-3 get the lock.  
  56. Thread-3 acquire lock again...  
  57. Thread-3 get the lock.  
  58. Thread-3 release lock...  
  59. Thread-3 release lock...  

不是很明白这个RLock的用途因为如果线程已经获得了这把锁已经锁住了在释放之前再获得一次有什么用从上面的输出结果来看感觉没什么用的.


5. Condition


        Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法: 

Condition([lock/rlock])

实例方法: 

acquire([timeout])/release():  调用关联的锁的相应方法。 

wait([timeout]):  调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。

使用前线程必须已获得锁定,否则将抛出异常。 

notify():  调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试

获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。

使用前线程必须已获得锁定,否则将抛出异常。 

notifyAll():  调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。

调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example6.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: Condition 的使用  
  6. import threading  
  7. import time  
  8.    
  9. # 商品  
  10. product = None  
  11. # 条件变量  
  12. con = threading.Condition()  
  13.    
  14. # 生产者方法  
  15. def produce():  
  16.     global product  
  17.       
  18.     if con.acquire():  
  19.         while True:  
  20.             if product is None:  
  21.                 print('produce...')  
  22.                 product = 'anything'  
  23.                   
  24.                 # 通知消费者,商品已经生产  
  25.                 con.notify()  
  26.               
  27.             # 等待通知  
  28.             con.wait()  
  29.             time.sleep(2)  
  30.    
  31. # 消费者方法  
  32. def consume():  
  33.     global product  
  34.       
  35.     if con.acquire():  
  36.         while True:  
  37.             if product is not None:  
  38.                 print('consume...')  
  39.                 product = None  
  40.                   
  41.                 # 通知生产者,商品已经没了  
  42.                 con.notify()  
  43.               
  44.             # 等待通知  
  45.             con.wait()  
  46.             time.sleep(2)  
  47.    
  48. t1 = threading.Thread(target=produce)  
  49. t2 = threading.Thread(target=consume)  
  50. t2.start()  
  51. t1.start()  

在两个线程相互握手的情况Condition比较适合使用核心理解notifywait



6. Semaphore/BoundedSemaphore

        Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()-1,调用release() +1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法: 

Semaphore(value=1): value是计数器的初始值。

实例方法: 

acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。 

release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example5.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: Condition 的使用  
  6. import threading  
  7. import time  
  8.    
  9. # 计数器初值为2  
  10. semaphore = threading.Semaphore(2)  
  11.    
  12. def func():      
  13.     # 请求Semaphore,成功后计数器-1;计数器为0时阻塞  
  14.     print('%s acquire semaphore...' % threading.currentThread().getName())  
  15.     if semaphore.acquire():          
  16.         print('%s get semaphore' % threading.currentThread().getName())  
  17.         time.sleep(4)  
  18.           
  19.         # 释放Semaphore,计数器+1  
  20.         print('%s release semaphore' % threading.currentThread().getName())  
  21.         semaphore.release()  
  22.    
  23. t1 = threading.Thread(target=func)  
  24. t2 = threading.Thread(target=func)  
  25. t3 = threading.Thread(target=func)  
  26. t4 = threading.Thread(target=func)  
  27. t1.start()  
  28. t2.start()  
  29. t3.start()  
  30. t4.start()  
  31.    
  32. time.sleep(2)  
  33.    
  34. # 没有获得semaphore的主线程也可以调用release  
  35. # 若使用BoundedSemaphore,t4释放semaphore时将抛出异常  
  36. print('MainThread release semaphore without acquire')  
  37. semaphore.release()  


7. Event


Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 Falsewait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 ConditionEvent没有锁,无法使线程进入同步阻塞状态。

构造方法: 

Event()

实例方法: 

isSet():  当内置标志为True时返回True。 

set():  将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。 

clear():  将标志设为False。 

wait([timeout]):  如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example8.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: Event 的使用  
  6. import threading  
  7. import time  
  8.   
  9. event = threading.Event()  
  10.   
  11. def func():  
  12.     # 等待事件,进入等待阻塞状态  
  13.     print('%s wait for event...' % threading.currentThread().getName())  
  14.     event.wait()  
  15.       
  16.     # 收到事件后进入运行状态  
  17.     print('%s recv event.' % threading.currentThread().getName())  
  18.   
  19. t1 = threading.Thread(target=func)  
  20. t2 = threading.Thread(target=func)  
  21. t1.start()  
  22. t2.start()  
  23.    
  24. time.sleep(2)  
  25.    
  26. # 发送事件通知  
  27. print('MainThread set event.')  
  28. event.set()  

其实我用得最多的也是这个


8. Timer


Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。C++我就很喜欢使用线程来作为定时器

构造方法: 

Timer(interval, function, args=[], kwargs={}) 

interval: 指定的时间 

function: 要执行的方法 

args/kwargs: 方法的参数

实例方法: 

TimerThread派生,没有增加实例方法。

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example9.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: Timer 的使用  
  6. import threading  
  7.    
  8. def func():  
  9.     print('hello timer!')  
  10.    
  11. timer = threading.Timer(5, func) # 5秒后执行  
  12. timer.start()  

9. local

        local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

[cpp]  view plain copy
  1. #!/usr/bin/env python  
  2. #example9.py  
  3. #use UTF-8  
  4. #Python 3.3.0  
  5. #功能: Timer 的使用  
  6. import threading  
  7.    
  8. local = threading.local()  
  9. local.tname = 'main'  
  10.    
  11. def func():  
  12.     local.tname = 'notmain'  
  13.     print(local.tname)  
  14.    
  15. t1 = threading.Thread(target=func)  
  16. t1.start()  
  17. t1.join()  
  18.    
  19. print(local.tname)  
  20.   
  21. 输出:  
  22. Notmain  
  23. Main  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值