
实现SOC与SOH联合估计的双扩展卡尔曼滤波算法及其在电池管理中的应用,实现SOC与SOH联合估计的双扩展卡尔曼滤波DEKF算法及其他滤波算法的比较
传统的卡尔曼滤波算法在SOC和SOH的估计中表现出一定的局限性,而DEKF算法通过引入扩展状态向量和扩展测量向量的方式,对传统卡尔曼滤波进行了改进,提高了估计的准确性和稳定性。通过合理选择和使用滤波算法,能够更准确地估计电池系统的SOC和SOH,提高电池管理系统的性能和可靠性。在实际应用中,根据电池系统的具体需求和性能要求,可以选择合适的滤波算法来实现SOC和SOH的联合估计。DEKF算法的核心思想是在卡尔曼滤波的基础上,引入扩展状态向量和扩展测量向量,从而提高滤波的精度和可靠性。









