210321
数学:
-
奇偶性
奇函数
sin x, tan x, arcsin x, arctan x, ln 1 − x 1 + x \frac{1-x}{1+x} 1+x1−x, ln (x + 1 + x 2 \sqrt{1 + x^2} 1+x2), e x − 1 e x + 1 \frac{e^x - 1}{e^x + 1} ex+1ex−1, f(x) - f(-x)
偶函数
x 2 x^2 x2, | x |, cos x, f(x) + f(-x)
-
奇偶性
设f(x)可导
① f(x)是奇函数 ⇒ \Rightarrow ⇒ f '(x)是偶函数
② f(x)是偶函数 ⇒ \Rightarrow ⇒ f '(x)是奇函数
设f(x)连续
① f(x)是奇函数 ⇒ \Rightarrow ⇒ ∫ 0 x f ( t ) d t \int_0^x {f(t)} \,{\rm d}t ∫0xf(t)dt是偶函数 【连续的奇函数其原函数都是偶函数】
② f(x)是偶函数 ⇒ \Rightarrow ⇒ ∫ 0 x f ( t ) d t \int_0^x {f(t)} \,{\rm d}t ∫0xf(t)dt是奇函数 【连续的偶函数其原函数中有唯一一个是奇函数】
-
周期性
① 若f(x)以T为周期,则f (ax + b) 以 T ∣ a ∣ \frac{T}{| a |} ∣a∣T(a ≠ \neq = 0)为周期
② 可导的周期函数其导函数为周期函数
-
可导 F(x) = F(x+T) ⇒ \Rightarrow ⇒ 导函数 f(x) = f(x+T)
-
*设 f(x) 连续且以T为周期,则
F(x) = ∫ 0 x f ( t ) d t \int_0^x {f(t)} \,{\rm d}t ∫0xf(t)dt是以T为周期的周期函数 ⇔ \Leftrightarrow ⇔ ∫ 0 T f ( x ) d x \int_0^T {f(x)} \,{\rm d}x ∫0Tf(x)dx = 0
③ 周期函数的原函数不一定是周期函数(如1 + cos x)
周期函数的原函数是周期函数的充要条件是其在一个周期上的积分为0( ∫ 0 T f ( x ) d x \int_0^T {f(x)} \,{\rm d}x ∫0Tf(x)dx = 0)
*证明:F(x+T) = ∫ 0 x + T f ( t ) d t \int_0^{x+T} {f(t)} \,{\rm d}t ∫0x+Tf(t)dt = ∫ 0 x f ( t ) d t \int_0^{x} {f(t)} \,{\rm d}t ∫0xf(t)dt + ∫ x x + T f ( t ) d t \int_x^{x+T} {f(t)} \,{\rm d}t ∫xx+Tf(t)dt = F(x) + ∫ x x + T f ( t ) d t \int_x^{x+T} {f(t)} \,{\rm d}t ∫xx+Tf(t)dt = F(x) + 0
-
210322
数学:
-
数列极限: lim n → ∞ x n \lim_{n \to \infty} x_n limn→∞xn = a ⇔ \Leftrightarrow ⇔ lim k → ∞ x 2 k − 1 \lim_{k \to \infty} x_{2k-1} limk→∞x2k−1 = lim k → ∞ x 2 k \lim_{k \to \infty} x_{2k} limk→∞x2k = a
(奇数列、偶数列需存在且相等,才能互相推证)
210323
数学:
-
sin x ———— cos x / \ / \ tan x ———— 1 ———— cot x \ / \ / sec x ———— csc x- s i n 2 x sin^2 x sin2x + c o s 2 x cos^2 x cos2x = 1
- t a n 2 x tan^2 x tan2x + 1 = s e c 2 x sec^2 x sec2x
- 1 + c o s 2 x cos^2 x cos2x = c s c 2 x csc^2 x csc2x
- t a n x ⋅ c o t x = 1 tanx\cdot cotx = 1 tanx⋅cotx=1
- s i n x ⋅ c s c x = 1 sinx\cdot cscx = 1 sinx⋅cscx=1
- c o s x ⋅ s e c x = 1 cosx\cdot secx = 1 cosx⋅secx=1
英语:
-
in respect of sth (formal & business)
- 关于;就……什么而言(concerning)
- 作为……的报酬(in payment for sth)
-
with respect | with all due respect (formal)
-
(通常在表示强烈不同意之前说)恕我直言
(used when you are going to disagree, usually quite strongly, with sb)
-
-
with respect to sth (formal or business)
- 关于;就…而言(concerning)
-
with respect | with all due respect (formal)
- (通常在表示强烈不同意之前说)恕我直言
(used when you are going to disagree, usually quite strongly, with sb )
-
pay your respects (to sb) (formal)
-
(拜访或问候某人)表示敬意
( to visit sb or to send a message of good wishes as a sign of respect for them )
-
210324
数学:(三角函数专题)
-
诱导公式:
s i n ( π + α ) = − s i n α sin(\pi+\alpha) = -sin\alpha sin(π+α)=−sinα s i n ( − α ) = − s i n α sin(-\alpha) = -sin\alpha sin(−α)=−sinα s i n ( π − α ) = s i n α sin(\pi-\alpha) = sin\alpha sin(π−α)=sinα
c o s ( π + α ) = − c o s α cos(\pi + \alpha) = -cos\alpha cos(π+α)=−cosα c o s ( − α ) = c o s α cos(-\alpha) = cos\alpha cos(−α)=cosα c o s ( π − α ) = − c o s α cos(\pi-\alpha) = -cos\alpha cos(π−α)=−cosα
t a n ( π + α ) = t a n α tan(\pi+\alpha) = tan\alpha tan(π+α)=tanα t a n ( − α ) = − t a n α tan(-\alpha) = -tan\alpha tan(−α)=−tanα t a n ( π − α ) = − t a n α tan(\pi-\alpha) = -tan\alpha tan(π−α)=−tanα
s i n ( π 2 + α ) = c o s α sin(\frac\pi2+\alpha) = cos\alpha sin(2π+α)=cosα s i n ( π 2 − α ) = c o s α sin(\frac\pi2-\alpha) = cos\alpha sin(2π−α)=cosα
c o s ( π 2 + α ) = − s i n α cos(\frac\pi2+\alpha) = -sin\alpha cos(2π+α)=−sinα c o s ( π 2 − α ) = s i n α cos(\frac\pi2-\alpha) = sin\alpha cos(2π−α)=sinα
-
二角和(差)公式:
-
s i n ( a + b ) = s i n a ⋅ c o s b + c o s ⋅ s i n b sin(a+b) = sina\cdot cos b + cos \cdot sin b sin(a+b)=sina⋅cosb+cos⋅sinb ( s i n α + c o s α = 2 s i n ( α + π 4 ) sin\alpha+cos\alpha = \sqrt2sin(\alpha+\frac\pi4) sinα+cosα=2sin(α+4π))
-
s i n ( a − b ) = s i n a ⋅ c o s b − c o s a ⋅ s i n b sin(a-b) = sin a\cdot cos b - cos a\cdot sin b sin(a−b)=sina⋅cosb−cosa⋅sinb
-
c o s ( a + b ) = c o s a ⋅ c o s b − s i n a ⋅ s i n b cos(a+b) = cosa\cdot cos b - sina\cdot sin b cos(a+b)=cosa⋅cosb−sina⋅sinb
-
c o s ( a − b ) = c o s a ⋅ c o s b + s i n a ⋅ s i n b cos(a-b) = cosa\cdot cosb + sina\cdot sinb cos(a−b)=cosa⋅cosb+sina⋅sinb
-
t a n ( a + b ) = t a n a + t a n b 1 − t a n a ⋅ t a n b tan(a+b) = \frac{tana+tanb}{1-tana\cdot tanb} tan(a+b)=1−tana⋅tanbtana+tanb
-
t a n ( a − b ) = t a n a − t a n b 1 + t a n a ⋅ t a n b tan(a-b) = \frac{tana-tanb}{1+tana\cdot tanb} tan(a−b)=1+tana⋅tanbtana−tanb
-
-
和差化积
s i n α + s i n β = 2 s i n α + β 2 ⋅ c o s α − β 2 sin\alpha+sin\beta = 2sin\frac{\alpha+\beta}{2}\cdot cos\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+β⋅cos2α−β s i n α − s i n β = 2 c o s α + β 2 ⋅ s i n α − β 2 sin\alpha-sin\beta = 2cos\frac{\alpha+\beta}{2}\cdot sin\frac{\alpha-\beta}{2} sinα−sinβ=2cos2α+β⋅sin2α−β
c o s α + c o s β = 2 c o s α + β 2 ⋅ c o s α − β 2 cos\alpha+cos\beta = 2cos\frac{\alpha+\beta}{2}\cdot cos\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+β⋅cos2α−β c o s α − c o s β = − 2 s i n α + β 2 ⋅ s i n α − β 2 cos\alpha-cos\beta = -2sin\frac{\alpha+\beta}{2}\cdot sin\frac{\alpha-\beta}{2} cosα−cosβ=−2sin2α+β⋅sin2α−β
-
二倍角
s i n 2 α = 2 s i n α ⋅ c o s α sin2\alpha = 2sin\alpha\cdot cos\alpha sin2α=2sinα⋅cosα
c o s 2 α = 2 c o s 2 α − 1 = 1 − 2 s i n 2 α = c o s 2 α − s i n 2 α = 1 − t a n 2 α 1 + t a n 2 α cos2\alpha = 2cos^2\alpha-1 = 1-2sin^2\alpha = cos^2\alpha - sin^2\alpha = \frac{1-tan^2\alpha}{1+tan^2\alpha} cos2α=2cos2α−1=1−2sin2α=cos2α−sin2α=1+tan2α1−tan2α
t a n 2 α = 2 t a n α 1 − t a n 2 α = 2 c o t α c o t 2 α − 1 = 2 c o t α − t a n α tan2\alpha = \frac{2tan\alpha}{1-tan^2\alpha} = \frac{2cot\alpha}{cot^2\alpha-1} = \frac{2}{cot\alpha-tan\alpha} tan2α=1−tan2α2tanα=cot2α−12cotα=cotα−tanα2
英语:
-
高分必备(315期)
- 必背句子
On another level, many in the medical community acknowledge that the assisted-suicide debate has been fueled in part by the despair of patients for whom modern medicine has prolonged the physical agony of dying.
- 译文
另一方面,许多医疗界人士承认,致使医生帮助患者自杀的这场争论升温的部分原因是由于病人的绝望情绪,对这些病人来说,现代医学延长了临终前肉体的痛苦。
- 点睛
该句的主语是many,谓语是acknowledge“承认”,后面有一个that引导的宾语从句,而其中由by引导的短语中又包含一个定语从句for whom modem medicine has prolonged the physical agony of dying,来修饰前面的patients。
- 考点归纳
注意on another level和on the level的用法。
-
on another level意为“在另一方面;在另一层次”,level前可以用important等形容词修饰。
This is a special phenomenon in this world, but on another level it is a significant part of human society.
这是一个世界上的特殊现象,但从另一方面来看,它是人类社会的重要部分。 -
on the level意为“坦率的;老实的”。
If you plan to buy a new car, I recommend you go to Joe Doakers. My friend Joe is really on the level-he’ll give you a fair price,and he’ll take good care of the car after you buy it.
要是你准备买新车的话,我建议你去找我的朋友乔·多克斯。乔是很老实的——他会给你很公道的价格。而且你买了车以后,他还会很好地维护你的车。
210331
数学
-
等价无穷小
- ( 1 + x ) a − 1 (1+x)^a-1 (1+x)a−1
- 1 − c o s x 1-cosx 1−cosx
- a x − 1 a^x-1 ax−1
- x − l n ( 1 + x ) x-ln(1+x) x−ln(1+x)
- l o g a ( 1 + x ) log_a(1+x) loga(1+x)
- x − s i n x x-sinx x−sinx
- a r c s i n x − x arcsinx-x arcsinx−x
- t a n x − x tanx-x tanx−x
- x − a r c t a n x x-arctanx x−arctanx
- a x ax ax
- 1 2 x 2 \frac{1}{2}x^2 21x2
- x l n a xlna xlna
- 1 2 x 2 \frac{1}{2}x^2 21x2
- 1 l n a x \frac{1}{lna}x lna1x
- x 3 6 \frac{x^3}{6} 6x3
- x 3 6 \frac{x^3}{6} 6x3
- x 3 3 \frac{x^3}{3} 3x3
- x 3 3 \frac{x^3}{3} 3x3
-
求导
- t a n x tanx tanx
- c o t x cotx cotx
- s e c x secx secx
- c s c x cscx cscx
- a r c s i n x arcsinx arcsinx
- a r c c o s x arccosx arccosx
- a r c t a n x arctanx arctanx
- a r c c o t x arccotx arccotx
- s e c 2 x sec^2x sec2x
- − c s c 2 x -csc^2x −csc2x
- s e c x ⋅ t a n x secx\cdot tanx secx⋅tanx
- − c s c x ⋅ c o t x -cscx\cdot cotx −cscx⋅cotx
- 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1−x21
- − 1 1 − x 2 -\frac{1}{\sqrt{1-x^2}} −1−x21
- 1 1 + x 2 \frac{1}{1+x^2} 1+x21
- − 1 1 + x 2 -\frac{1}{1+x^2} −1+x21
-
泰勒
- 1 1 − x \frac{1}{1-x} 1−x1
- 1 1 + x \frac{1}{1+x} 1+x1
- e x e^x ex
- s i n x sinx sinx
- c o s x cosx cosx
- l n ( 1 + x ) ln(1+x) ln(1+x)
- ( 1 + x ) α (1+x)^\alpha (1+x)α
- 1 + x + x 2 + . . . + x n + . . . = ∑ n = 0 ∞ x n ( − 1 < x < 1 ) 1+x+x^2+...+x^n+... = \sum_{n=0}^{\infin}x^n (-1<x<1) 1+x+x2+...+xn+...=∑n=0∞xn(−1<x<1)
- 1 − x + x 2 − . . . + ( − 1 ) n x n + . . . = ∑ n = 0 ∞ ( − 1 ) n x n ( − 1 < x < 1 ) 1-x+x^2-...+(-1)^nx^n+... = \sum_{n=0}^{\infin}(-1)^nx^n (-1<x<1) 1−x+x2−...+(−1)nxn+...=∑n=0∞(−1)nxn(−1<x<1)
-
常见级数例子
-
正项级数
- ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infin} \frac{1}{n} ∑n=1∞n1
- ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infin} \frac{1}{n^2} ∑n=1∞n21
- ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infin} \frac{1}{\sqrt{n}} ∑n=1∞n1
- ∑ n = 2 ∞ 1 l n n \sum_{n=2}^{\infin} \frac{1}{lnn} ∑n=2∞lnn1
- ∑ n = 2 ∞ 1 n l n n \sum_{n=2}^{\infin} \frac{1}{nlnn} ∑n=2∞nlnn1
- ∑ n = 1 ∞ n \sum_{n=1}^{\infin}n ∑n=1∞n
发散 收敛 发散
发散 发散 发散
-
交错级数
- ∑ n = 1 ∞ ( − 1 ) n \sum_{n=1}^{\infin} (-1)^n ∑n=1∞(−1)n
- ∑ n = 1 ∞ ( − 1 ) n n \sum_{n=1}^{\infin} \frac{(-1)^n}{n} ∑n=1∞n(−1)n
- ∑ n = 1 ∞ ( − 1 ) n n \sum_{n=1}^{\infin} \frac{(-1)^n}{\sqrt{n}} ∑n=1∞n(−1)n
- ∑ n = 2 ∞ ( − 1 ) n l n n \sum_{n=2}^{\infin} \frac{(-1)^n}{lnn} ∑n=2∞lnn(−1)n
发散 条件收敛 条件收敛 条件收敛
-
210401
英语
-
高分必背(323期)
01 必背句子
To those who are unaware that animal research was needed to produce these treatments, as well as new treatments and vaccines, animal research seems wasteful at best and cruel at worst.
02 译文
许多人没有意识到这些治疗方法以及新的治疗方法和疫苗都必须进行动物实验。对于他们来说,动物实验说得好是浪费,说得不好就是残忍的。
03 点睛
本句的主干为animal research seems wasteful at best and cruel at worst。
句首的介词结构To those who are unaware those…and vaccines作状语,those后跟有一个定语从句who are unaware…,
该定语从句中还含有宾语从句that animal research was needed to produce these treatments,as well as new treatments and vaccines。
04 重点词组
注意at best和at worst的用法
-
at best意为“充其量,至多”。
She is at best a second-rate singer.
她充其量是个二流歌手。Don’t expect much of him; he is at best a student.
不要时他期望过高;他只不过是个学生。 -
at( the) worst意为“在最坏的情况下;从坏处想;在最保守的估计下”。
He’s a fool at the best and at the worst he’s a criminal.
从好处想的话他是个傻瓜,从坏处想则是个罪犯。At worst,the storm will make us postpone the trip.
最坏的估计是暴风雨会使我们推迟行程。
05 重点单词
- tribute——n.贡品,颂词,称赞,(表示敬意的)礼物
- brochure——n.小册子
- contribute
- fur
- distribute——v.分配,散布
-

被折叠的 条评论
为什么被折叠?



