参考:
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
大概过程如下:
------>卷积(过滤,提取 特征)
------>ReLU(非线性化并将特征图中的所有负像素值替换为零)
------>池化(降低了每个特征图的维数,但保留了最重要的信息)
------>完全连接层(分类器)
其中一些主要函数的应用方法:
------>TF-卷积函数 tf.nn.conv2d 介绍
https://www.cnblogs.com/qggg/p/6832342.html
------>tensorflow的tf.nn.relu()函数
https://blog.csdn.net/Random_R/article/details/80523265
------>TF-池化函数 tf.nn.max_pool 的介绍
https://www.cnblogs.com/qggg/p/6832705.html
------>TF全连接
https://www.jianshu.com/p/3855908b4c29
其它函数可以参考
https://blog.csdn.net/zj360202/article/details/70263110
最后通过一个简单的例子来加深了解
TF-tensorflow入门例子mnist,卷积版本
https://www.cnblogs.com/qggg/p/6851771.html
2011

被折叠的 条评论
为什么被折叠?



