卷积神经网络(CNN)的直观解释

参考:
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
大概过程如下:
------>卷积(过滤,提取 特征)
------>ReLU(非线性化并将特征图中的所有负像素值替换为零)
------>池化(降低了每个特征图的维数,但保留了最重要的信息)
------>完全连接层(分类器)

其中一些主要函数的应用方法:
------>TF-卷积函数 tf.nn.conv2d 介绍
https://www.cnblogs.com/qggg/p/6832342.html
------>tensorflow的tf.nn.relu()函数
https://blog.csdn.net/Random_R/article/details/80523265
------>TF-池化函数 tf.nn.max_pool 的介绍
https://www.cnblogs.com/qggg/p/6832705.html
------>TF全连接
https://www.jianshu.com/p/3855908b4c29
其它函数可以参考
https://blog.csdn.net/zj360202/article/details/70263110

最后通过一个简单的例子来加深了解
TF-tensorflow入门例子mnist,卷积版本
https://www.cnblogs.com/qggg/p/6851771.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS从业者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值