pytorch训练模型内存溢出

1、训练模型命令命令

如下所示是训练命名实体识别的命令,在win10系统下执行

activate pytorch
cd F:\Python\github\ultralytics-main\submain\pytorch_bert_bilstm_crf_ner-main
f:
python main.py --bert_dir="../model_hub/chinese-bert-wwm-ext/" --data_dir="./data/cner/" --data_name="cner" --model_name="bert" --log_dir="./logs/" --output_dir="./checkpoints/" --num_tags=33 --seed=123 --gpu_ids="0" --max_seq_len=150 --lr=3e-5 --crf_lr=3e-2 --other_lr=3e-4 --train_batch_size=32 --train_epochs=3 --eval_batch_size=32 --lstm_hidden=128 --num_layers=1 --use_lstm="False" --use_idcnn="True" --use_crf="True" --dropout_prob=0.3 --dropout=0.3

2、内存溢出

本机GPU是6G的,所需明显超出本机显存,如下图
在这里插入图片描述

3、解决方法

尝试减少训练批次大小(train_batch_size)来减少GPU内存的使用。可以将train_batch_size的值从32减少到16或更小的值

activate pytorch
cd F:\Python\github\ultralytics-main\submain\pytorch_bert_bilstm_crf_ner-main
f:
python main.py --bert_dir="../model_hub/chinese-bert-wwm-ext/" --data_dir="./data/cner/" --data_name="cner" --model_name="bert" --log_dir="./logs/" --output_dir="./checkpoints/" --num_tags=33 --seed=123 --gpu_ids="0" --max_seq_len=150 --lr=3e-5 --crf_lr=3e-2 --other_lr=3e-4 --train_batch_size=16 --train_epochs=3 --eval_batch_size=32 --lstm_hidden=128 --num_layers=1 --use_lstm="False" --use_idcnn="True" --use_crf="True" --dropout_prob=0.3 --dropout=0.3

4、结果

可以开始训练了
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS从业者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值