语音信号处理——视频转换音频(FFmpeg)mp4转wav 利用FFmpeg将mp3,mp4换为wav格式。1, 利用终端命令方式import osfrom librosa.util import find_files# mp3转wavinput_dir = r"/mp4files"output_wav_dir = r"/output_wav"mp4s = find_files(input_dir,ext="mp4")for mp4 in mp4s: temp_wav_dir = os.path.basename(mp4).replace("mp4
加载pickle文件, 找不到带名称的路径 两个原因1, 文件名错误2, 可能原因,在排除文件名错误后,可能由于文件名字太长,从而导致招不到路径import pickledef load_pickle(file_name): f = open(file_name, "rb") data = pickle.load(f) f.close() return data...
分布评价指标分析(切比雪夫距离,KL距离,余弦相似度,平方差和, 巴氏系数)python代码 切比雪夫距离def chebyshev_istance(a_list,b_list): return np.max(np.abs(a_list-b_list))KL距离def KLdiv(a_list, b_list): ''' 衡量一个分布相对于另一个分布的差异性;这个指标不能用作距离衡量,因为该指标不具有对称性 概率分布越相近,KL散度越小 ''' return scipy.stats.entropy(a_list,b_list)余弦相似度d
pytorch加载不同size的文件(.npy, .wav, .jpg)进行padding pytorch加载不同size的文件,然后进行padding以加载不同size的"XXX.numpy"文件为例;第一步:重写dataset,代码如下from torch.utils.data import DataLoader, Datasetclass train_dataset(Dataset): def __init__(self, train_path): super(train_dataset, self) self.all_list = find
# pickle的用法和读写txt文件(python代码) python中pickle用法import pickledef save_file(file_name,data): f = open(file_name,"wb") # 写 pickle.dump(data, f) f.close() def load_file(file_name): #读 f = open(file_name,'rb+') data = pickle.load(f) f.close() return datadata = load_file(file_name
使用Opensmile提取语音MFCC特征 使用Opensmile提取语音MFCC特征1, 官网下载OpenSmile包,进入到"opensmile-2.3.0\bin\Win32"路径2, 打开cmd终端,然后输入SMILExtract_Release -C E:\software\opensmile-2.3.0\config\MFCC12_E_D_A.conf -I E:\data\012.wav -O E:\data\MFCC_2.htk3, 其数据结果是以htk格式保存,可以使用matlab相关函数进行打开查看。...
语音特征提取(语谱图Spectrogram,Fbank, MFCC, 及其delta-一阶差分)——python代码 导入相关包import osimport wavioimport numpy as npimport mathfrom matplotlib import pyplot as pltfrom scipy.fftpack import dct读取语音数据及主函数for wav in wavs: wav_dir = os.path.join(data_dir, wav) wav_data = wavio.read(wav_dir) data = wav_data.data sampl
回声消除评价指标——ERLE, PESQ 回声消除评价指标——ERLE, PESQERLE(echo return loss enhancement):对于回声消除,单讲,只有回声信号,没有近端信号,判断输出结果是否能把回声信号消除掉。其值越大,证明效果越好。其中y(n)是输入信号,s(n)是输出信号。PESQ(perceptual evalution of speech quality):其值是越大越好。针对双讲(回声信号,和近端信号同时存在)。判断双讲下,计算PESQ方法:在python安装pypesq,安装方式如下:pip
python求语音信号语谱图、短时能量、短时过零率 python求语音信号语谱图、短时能量、短时过零率转自:链接: https://blog.csdn.net/YAOHAIPI/article/details/102986096?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522159551481619195239827172%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_