caffe
五四三两幺-发射!
这个作者很懒,什么都没留下…
展开
-
caffe中概念笔记
如果input尺寸是3*224*224,下一层是conv1,kernel_size是7,pad是3,stride是2,num_output是64,则,先把输入加上pad,即输入变为3*(224+3*2)*(224+3*2)=3*230*230,卷积后的某一边尺寸为:(230-7)/2+1=111+1=112,所以conv1的输出是64*112*112关于参数个数计算:按照以原创 2017-02-28 11:47:19 · 475 阅读 · 0 评论 -
caffe的solver理解
【一个iteration等于使用batchsize个样本训练一次】【一个epoch等于使用训练集中全部样本训练一次】【batchsize每次在训练集中取batchsize个样本训练】【举个例子,训练集有1000个样本,batchsize=10,那么:】【训练完整个样本集需要:】【100次iteration,1次epoch。】test_iter: 1000 一次测试需要的it原创 2017-03-03 10:53:00 · 909 阅读 · 0 评论 -
ubuntu下新建caffe的c++工程 环境配置
下面都是相对路径include目录:caffe-master/includecaffe-master/srccaffe-master/include_caffe_protolink目录:caffe-master/build/libopencv-2.4.9/release/lib/usr/local/cuda-7.5/lib64 ####原创 2017-03-09 16:50:16 · 1783 阅读 · 0 评论 -
caffe绘制loss和accuracy曲线
自带工具1、训练时后面加个参数$TOOLS/caffe train --solver=$SOLVERFILE 2>&1 |tee out.log2、在tools/extra目录下有个parse_log.py,用它来解析日志文件python parse_log.py out.log ./ #两个参数,一个是日志文件,另一个是保存的路径运行后会生成两个文件out.l原创 2017-03-11 21:54:57 · 554 阅读 · 0 评论 -
caffe通过python(pycaffe)在已有模型上进行批量预测,批量提取特征
相关模块:import numpy as np import caffeimport cv2我使用的是net.Classifier()这个接口,先看看这个类的初始化函数,了解一下各个参数:def __init__(self, model_file, pretrained_file, image_dims=None, mean=None, input_scale=原创 2017-05-06 17:58:40 · 5808 阅读 · 0 评论 -
ubuntu16.04下,安装caffe+cuda8.0+cudnn5.1(附各种错误解决)
所需文件1,caffe2,cuda8.03,cudnn5.11,NIVIDA显卡驱动安装先禁用nouveau驱动:先去 /etc/modprobe.d/blacklist.conf中最后一行加上 blacklist nouveau,保存然后 sudo update-initramfs -u重启,输入lsmod | grep nouveau如果原创 2017-05-05 11:27:48 · 8088 阅读 · 0 评论 -
关于caffe训练出现loss=87.3365
可以在solver里面设置:debug_info: true看看各个层的data和diff是什么值,一般这个时候那些值不是NAN(无效数字)就是INF(无穷大),一般的解决办法是:1、检查数据的标签是否从0开始且连续2、把学习率base_lr调低3、数据问题4、中间层没有归一化,导致经过几层后,输出的值已经很小了,这个时候再计算梯度就比较尴尬了,这也是我遇到的问题,原创 2017-03-07 11:46:50 · 6258 阅读 · 4 评论
分享