人工智能
文章平均质量分 78
五四三两幺-发射!
这个作者很懒,什么都没留下…
展开
-
onnx模型加入resize op
my code:# -*- coding: utf-8 -*-import numpy as npimport onnxfrom onnx import helperfrom onnx import AttributeProto, TensorProto, GraphProtoimport onnxruntime.backend as backendimport cv2import onnxruntime as ortimport matplotlib.pyplot as plt.原创 2021-09-03 16:07:43 · 2485 阅读 · 0 评论 -
win下编译TNN安卓库(静态或者动态) + android studio ndk调用
前言:如果想借用TNN自己写一个库(比如exp.so), 通常我们选用TNN的静态库(libTNN.a),因为使用静态库后自己生成的库文件就一个exp.so如果使用动态库(libTNN.so)那么自己生成的库文件就有两个了: libTNN.so和exp.soTNN安卓库编译环境: 源码: https://github.com/Tencent/TNN/archive/refs/tags/v0.3.0.zip c++编译器: "C:\Program Files (x86)\Micr...原创 2021-08-24 11:48:11 · 1533 阅读 · 0 评论 -
记录过程: Android Studio4.2通过NDK调用TNN(预编译的tnn so库)
目录0. 准备1. 创建android ndk工程2. 分析默认生成的工程3. 写好java native接口4. 实现这些java native方法(jni)5. 修改cpp/CMakeLists.txt, 准备编译cpp工程6. 编译cpp工程7. 编写简单android界面, 测试ImageClassify结果8. 结果环境:win10jdk1.8android studio 4.2.2 SDK Platforms: Android...原创 2021-08-20 18:32:18 · 2028 阅读 · 2 评论 -
YOLOX笔记
正负样本划分过程说明: gt_centerbbox是在gt_bbox中心点向四周发散的bbox, 中心点到该bbox四边的距离是 center_radius * expanded_strides_per_image1. is_in_boxes: [n_gt, n_anchor], 样本中心点是否落在各个gt_bbox里面2. is_in_boxes_all: [n_anchor], 样本中心点是否至少落在1个gt_bbox里面3. is_in_centers: [n_gt, n.原创 2021-07-23 15:29:28 · 3810 阅读 · 11 评论 -
windows下最新yolov5转ncnn教程(支持u版yolov5(ultralytics版)v5.0)
参考1.详细记录u版YOLOv5目标检测ncnn实现, 这篇文章作者就是ncnn作者2. YOLOv5转NCNN过程3.TorchScript, ONNX, CoreML Export#251, 这是yolov5官方github上的issue前提1.编译好ncnn win, 我用的是ncnn-20210525-full-source2.git clone yolov5源码,我是在20210630时间直接clone的主页3. 根据TorchScript, ONNX, CoreML E...原创 2021-07-01 11:16:16 · 2185 阅读 · 1 评论 -
简单理解nvidia tensorRT模型量化原理
参考资料:某人的量化原理笔记https://blog.csdn.net/sinat_31425585/article/details/101607785某人对int8比较详细的介绍https://zhuanlan.zhihu.com/p/58182172某人对ncnn的量化原理和源码理解(ncnn量化是基于tensorRT改进的)https://zhuanlan.zhihu.com/p/72375164一、两张图粗糙理解量化思路一句话把原始值等比例映射到-127~127, 以便.原创 2021-06-29 11:14:24 · 1723 阅读 · 1 评论 -
目标检测DETR理解: 从网络前向张量的变化开始
文章官方git仓库原创 2021-06-17 14:38:54 · 1348 阅读 · 3 评论 -
windows10上安装mmdetection2.5.0 + pytorch1.6 + CUDA10.1 (python==3.6)
之前只能在windows上安装py37版本的, 目前已支持py36了.(2020-10-19)能不能安装, 主要是看能装什么版本的mmcv-full.在mmcv的安装包网址上可以看到, 目前已经有mmcv_full-1.1.5+torch1.6.0+cu101-cp36-cp36m-win_amd64.whl的安装包了.而在mmdetection的官方安装教程中可以看到, mmdetection>=2.3.0版本是需要mmcv-full>=1.0.2的.能够直接用pip安装mmcv-fu原创 2020-10-19 14:30:57 · 1774 阅读 · 0 评论 -
windows10上安装detectron2(0.2.1) + pytorch1.5.1 + CUDA10.1
0. 安装NVIDIA显卡驱动, 安装CUDA(因为底层需要用到c++编译deformable conv层) 注意: 由于后面用conda安装pytorch会安装conda的cudatoolkit包, 需要确保cudatoolkit和这里安装的本地CUDA版本一致(比如下面装的是CUDA10.1, 这里也要装CUDA10.1)1. 根据NVIDIA显卡驱动确定自己可以安装的CUDA版本以及pytorch版本 上图来自cuda-toolkit-release-notes 比如...原创 2020-10-19 11:47:58 · 2753 阅读 · 0 评论 -
高斯模糊(高斯滤波)的原理与算法
该文章为转载内容,转自https://blog.csdn.net/nima1994/article/details/79776802,http://www.ruanyifeng.com/blog/2012/11/gaussian_blur.html通常,图像处理软件会提供”模糊”(blur)滤镜,使图片产生模糊的效果。“模糊”的算法有很多种,其中有一种叫做“高斯模糊”(Gaussi...转载 2020-01-01 15:02:54 · 2415 阅读 · 0 评论 -
从源码解析YOLOv3的损失函数
损失函数源码参考这里yolo_layer.c本文参考这里和这里yolo_layer.c中的delta指的是对网络层原始输出y'的负梯度, delta=-gradient总的来说,loss可分为loss_obj, loss_noobj, loss_cls, loss_coor4个部分, 前3个部分都用到了BCE(binary cross entropy)(网上很多复现的代码中, 损失和原文是有...原创 2019-12-17 17:14:41 · 7212 阅读 · 13 评论 -
GBDT算法笔记
目录1.CART回归树2.加法模型与前向分布算法3.回归问题的提升树4.GBDT算法5.GBDT用于二分类问题A.单个样本的损失(BCE损失)B.在第m步样本的损失的负梯度C.算法的第一步中, 模型的初始值D.每个节点区域的输出值的估计概述:GBDT算法可以看成是由M棵树CART回归树组成的加法模型,该模型使用前向分布算法来学习,在前向分布算法中,每一...原创 2019-11-26 17:52:18 · 547 阅读 · 0 评论 -
keras通过callback根据epoch自定义修改学习率以及根据loss停止训练
直接放上代码from tensorflow.keras.callbacks import LearningRateScheduler, Callbackclass EarlyStoppingByLossVal(Callback): def __init__(self, monitor='val_loss', value=0.00001, verbose=0): s...原创 2019-11-18 18:09:01 · 3227 阅读 · 0 评论 -
starGAN的笔记(代码)
一、图片和标签融合输入CNN:把标签转为one_hot(记为c), 维度是类别的个数, 假设是5个类别, 那么x.size()==>[nb, cn, h, w] (cn是图片通道)y.size()==>[nb, 1]c.size()==>[nb, 5]在generator的forward时, 把c扩展到四个维度(记为c_expand), 第3 4维度值和x一样首先通过...原创 2018-01-25 21:12:32 · 3041 阅读 · 7 评论
分享