计算机视觉与深度学习实战,Python为工具,知识库的手写体数字识别

随着人工智能技术的飞速发展,计算机视觉与深度学习已成为当今科技领域的热点。手写体数字识别作为计算机视觉的一个重要应用,不仅在邮政编码、银行支票处理等方面有广泛应用,也是机器学习和深度学习入门者的经典实战案例。本文将通过Python这一强大工具,介绍如何使用深度学习进行手写体数字识别。

一、手写体数字识别概述

手写体数字识别,即识别手写数字0-9,是机器学习领域的一个经典问题。这个问题最初由Yann LeCun等人于上世纪90年代提出,并使用卷积神经网络(CNN)进行了有效解决。如今,随着深度学习技术的不断进步,我们可以使用更加复杂的网络结构来提高识别的准确率。

二、数据集准备

为了进行手写体数字识别,我们需要一个标注好的手写数字数据集。MNIST是一个常用的手写数字数据集,包含了60,000个训练样本和10,000个测试样本。每个样本都是28x28的灰度图像,代表0-9中的一个手写数字。

三、深度学习模型构建

在Python中,我们可以使用TensorFlow或PyTorch等深度学习框架来构建模型。以TensorFlow为例,我们可以构建一个卷积神经网络(CNN)来进行手写体数字识别。

导入必要的库

构建CNN模型

编译模型

四、模型训练与评估

加载并准备数据

训练模型

评估模型

五、部分示例代码



当然,以下是对上文提到的手写体数字识别开发过程中关键步骤的详细代码示例。我们将使用TensorFlow和Keras库来构建和训练一个卷积神经网络(CNN)模型。

一)导入必要的库

python

import tensorflow as tf  

from tensorflow.keras import datasets, layers, models  

from tensorflow.keras.utils import to_categorical

二)加载并准备数据

python

# 加载MNIST数据集  

(train_

  • 40
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好知识传播者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值