yingpeng_zhong
码龄8年
求更新 关注
提问 私信
  • 博客:16,692
    16,692
    总访问量
  • 5
    原创
  • 9
    粉丝
  • 10
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2017-10-08
博客简介:

yingpeng_zhong的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得2次评论
  • 获得10次收藏
创作历程
  • 4篇
    2018年
  • 2篇
    2017年
TA的专栏
  • 压缩感知
    3篇
  • 深度学习量化
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

(笔记)细颗粒度的三值网络Ternary Neural Networks with Fine-Grained Quantization

原文链接摘要方法实验效果原文链接https://arxiv.org/abs/1705.01462摘要提出一种三值化方法,激活函数是8/4bit的,不需要训练,对N个权重量化到三值 ,N=2,4,8,16等等。当N=4时,ResNet-101和ResNet-50的Top1准确率分别下降3.7%和4.2%。方法目的:不训练地,把32bit浮点权重W...
原创
发布博客 2018.06.02 ·
2250 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

(笔记)网络压缩量化,训练三值量化TRAINED TERNARY QUANTIZATION

原文链接:摘要方法实验效果讨论原文链接:https://arxiv.org/abs/1612.01064摘要提供一个三值网络的训练方法。对AlexNet在ImageNet的表现,相比32全精度的提升0.3%。方法对于每一层网络,三个值是32bit浮点的{−Wnl,0,Wpl}{−Wln,0,Wlp}\{-W^n_l, 0 , W^p_l\},...
原创
发布博客 2018.05.20 ·
3848 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

(笔记)脉冲深度残差网络Spiking Deep Residual Network

原文链接摘要方法一方法二实验原文链接https://arxiv.org/abs/1805.01352摘要本文提供一种有效的把ResNet转成脉冲神经网络(SNN)的方法。主要提出两个方法。 一,针对残差结构的归一化,把连续激活函数值转成发射频率(firerate)。 二,分层的误差补偿。方法一针对残差结构的归一化,把连续激活函数值转成发射频率(f...
原创
发布博客 2018.05.13 ·
1867 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

(笔记)通过知识蒸馏和量化进行模型压缩MODEL COMPRESSION VIA DISTILLATION AND QUANTIZATION

(笔记)Model Compression via Distillation and Quantization(笔记)Model Compression via Distillation and Quantization原文链接:https://arxiv.org/abs/1802.05668代码: https://github.com/antspy/quantized_distill...
原创
发布博客 2018.05.06 ·
3959 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

(笔记)神经网络压缩,Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks(一)

目录目录原文简要介绍摘要原文paper: http://lepsucd.com/wp-content/uploads/2015/08/Thesis_Philipp_Gysel.pdf code: https://github.com/MichalBusta/Ristretto-caffe/commit/55c64c202fc8fca875e108b48c13993b7fdd0f63 20
原创
发布博客 2017.10.14 ·
2895 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

(摘要)ICLR 2017 神经网络压缩,Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weig

目录目录原文摘要原文原文:https://arxiv.org/abs/1702.03044 代码:https://github.com/Zhouaojun/Incremental-Network-Quantization摘要Incremental Network Quantization(INQ)是一种神经网络压缩方法。它以已训练的任意全精度网络作为输入,输出权值为0或2的整数次幂的网络
翻译
发布博客 2017.10.08 ·
1874 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏