hdu-1394Minimum Inversion Number

hdu-1394Minimum Inversion Number

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

Output
For each case, output the minimum inversion number on a single line.
 

Sample Input
  
  
10 1 3 6 9 0 8 5 7 4 2
 

Sample Output
  
  
16
 

题目大意:

输入一个整数n,一个数列x[n],数列是由0~n-1这n个数组成的。该数列可以有多中变换。变换的规则是:每次变换只能移一次,只能将第一个数字移动到数列最后。求出每种变换之后的逆序数(包括原数列),输出这些逆序数中的最小值。


解题思路:

根据逆序数的性质,可以先求出原数列的逆序数,再递推出变换之后的逆序数。

例如:原数列的逆序数为sum,根据逆序数的性质,变换一次之后的逆序数就为:sum+(n-2*x[i]-1)

推导过程: 假设现在的数列为 a1,a2, a3,......an。此时的逆序数为sum。 

如果在a1后面的数中有,比a1大的有max个,比a1小的有min个,易知,max=n-a1-1,min=n-1-max。

当进行一次变换之后,数列变成了a2,a3,......an,a1。那么之前在a1后面的数,全部到了a1的前面,所以此时的逆序数为sum+max-min。即sum+n-2*a1-1。推广到一般形式就是:sum+n-2*x[i]-1  (sum是变换前一次的逆序数)。


解题方法:

先用线段树求出原数列的逆序数,在用公式推导出每种形式的逆序数,最后求出最小值。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 5555
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int sum[maxn<<2];
void push(int rt)
{
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
    sum[rt]=0;
    if(l==r)
        return ;
    int m=(r+l)>>1;
    build(lson);
    build(rson);
}
void updata(int p,int l,int r,int rt)
{
    if(l==r)
    {
        sum[rt]++;
        return ;
    }
    int m=(r+l)>>1;
    if(p<=m)
        updata(p,lson);
    else
        updata(p,rson);
    push(rt);
}
int query(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        return sum[rt];
    }
    int m=(r+l)>>1;
    int ans=0;
    if(L<=m)
        ans+=query(L,R,lson);
    if(R>m)
        ans+=query(L,R,rson);
    return ans;
}
int x[maxn<<1];
int main()
{
    int n,sum;
    while(~scanf("%d",&n))
    {
        build(0,n-1,1);
        sum=0;
        for(int i=0;i<n;i++)//求出原数列的逆序数sum
        {
            scanf("%d",&x[i]);
            sum+=query(x[i],n-1,0,n-1,1);
            updata(x[i],0,n-1,1);
        }
        int ans=sum;
        for(int i=0;i<n-1;i++)//推出每种形式的逆序数,再进行比较,将较小的逆序数存在ans中
        {
            sum+=n-2*x[i]-1;
            ans=min(ans,sum);
        }
        printf("%d\n",ans);
    }
    return 0;
}


内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值