版权声明:以下图片截取自《数字图像处理》冈萨雷斯 一书中。
1.频率域滤波基础
1.基础知识
变化最慢的频率分量(u=v=0)与图像的平均灰度成正比;当我们远离变换的原点是,低频对应于图像中变化缓慢的灰度分量。变换幅度(谱)和相角。
频率域滤波:修改一幅图像的傅里叶变换、然后计算其反变换得到处理后的结果;其基本滤波公式如下(中心化):

变换中的低频:与图像中缓慢变化的灰度分量有关(室内的墙面和室外少云的天空等);
变换中的高频:由灰度的尖锐过渡造成(边缘和噪声等)。
低通滤波器(衰减高频而通过低频):模糊一幅图像;
高通滤波器(衰减低频而通过高频):增强尖锐的细节,但将导致图像对比度的降低。
DFT是复数阵列,可以将它表示为实部和虚部:

零相移滤波器:等同地影响实部和虚部而不影响相位的滤波器。
频率域滤波步骤:


2.空间滤波和频率域滤波
空间域和频率域滤波间的纽带:卷积定理。
给定一个空间滤波器,可以用该空间滤波器的傅里叶正变换得到其平吕与表示&#x

本文详细介绍了频率域滤波的基础知识,包括低通滤波器和高通滤波器的作用,以及如何使用它们进行图像平滑和锐化。通过理想滤波器、布特沃斯滤波器和高斯滤波器等实例,阐述了不同类型的滤波器在图像处理中的应用。同时,讨论了同态滤波和选择性滤波,如带阻滤波器和陷波滤波器,强调了它们在特定频段处理上的重要性。
最低0.47元/天 解锁文章
9189

被折叠的 条评论
为什么被折叠?



