66.机器人的运动范围
问题:
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
解决:
思想:
从(0,0)开始走,每成功走一步标记当前位置为true,然后从当前位置往四个方向探索,
返回1 + 4 个方向的探索值之和。
2.探索时,判断当前节点是否可达的标准为:
1)当前节点在矩阵内;
2)当前节点未被访问过;
3)当前节点满足limit限制。
python代码:
# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.a=0
def movingCount(self, threshold, rows, cols):
# write code here
board=[[0 for _ in range(cols)] for _ in range(rows)]
def sum1(r,c):
sum1=sum(map(int,str(r)+str(c)))
return sum1>threshold
def find(r,c):
if not (0<=r<rows and 0<=c<cols): return
if(board[r][c]==1):
return
if(board[r][c]==-1 or sum1(r,c)):
board[r][c]=-1
return
board[r][c]=1
self.a+=1
find(r+1,c)
find(r-1,c)
find(r,c+1)
find(r,c-1)
find(0,0)
return self.a

本文详细解析了机器人在限定条件下的运动范围算法。通过设定坐标数位和的阈值,探讨了机器人如何在m行n列的方格中移动,避免进入数位和超过阈值的格子。文章提供了Python实现代码,展示了递归探索和标记已访问位置的方法。
6万+

被折叠的 条评论
为什么被折叠?



