老卫带你学---剑指offer刷题系列(66.机器人的运动范围)

本文详细解析了机器人在限定条件下的运动范围算法。通过设定坐标数位和的阈值,探讨了机器人如何在m行n列的方格中移动,避免进入数位和超过阈值的格子。文章提供了Python实现代码,展示了递归探索和标记已访问位置的方法。
摘要由CSDN通过智能技术生成

66.机器人的运动范围

问题:

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

解决:

思想:

从(0,0)开始走,每成功走一步标记当前位置为true,然后从当前位置往四个方向探索,
返回1 + 4 个方向的探索值之和。
2.探索时,判断当前节点是否可达的标准为:
1)当前节点在矩阵内;
2)当前节点未被访问过;
3)当前节点满足limit限制。

python代码:
# -*- coding:utf-8 -*-
class Solution:
    
    def __init__(self):
        self.a=0
    def movingCount(self, threshold, rows, cols):
        # write code here
        board=[[0 for _ in range(cols)] for _ in range(rows)]
        def sum1(r,c):
            sum1=sum(map(int,str(r)+str(c)))
            return sum1>threshold
        def find(r,c):
            if not (0<=r<rows and 0<=c<cols): return
            if(board[r][c]==1):
                return
            if(board[r][c]==-1 or sum1(r,c)):
                board[r][c]=-1
                return
            board[r][c]=1
            self.a+=1
            find(r+1,c)
            find(r-1,c)
            find(r,c+1)
            find(r,c-1)
            
        find(0,0)
        return self.a




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值