4. 寻找两个正序数组的中位数
问题:
给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
解决:
思想,通过截断来让复杂度下降,通过递归来寻找符合条件的kth元素。
注释里有详细的介绍。
func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
n := len(nums1) + len(nums2)
if n%2 == 0 {
l := find(nums1, 0, nums2, 0, n/2)
r := find(nums1, 0, nums2, 0, n/2+1)
return float64(l+r) / 2.0
} else {
return float64(find(nums1, 0, nums2, 0, n/2+1))
}
}
func find(nums1 []int, i int, nums2 []int, j int, k int) int {
//默认nums1的长度要小于等于nums2.
if len(nums1)-i > len(nums2)-j {
return find(nums2, j, nums1, i, k)
}
//递归边界1:k为1,直接返回两个数组的首元素
if k == 1 {
if i == len(nums1) {
return nums2[j]
} else {
return Min(nums1[i], nums2[j])
}
}
//递归边界2:当nums1为空,直接返回nums2的j+k-1元素
if len(nums1) == i {
return nums2[j+k-1]
}
si := Min(len(nums1), i+k/2)
sj := j + k/2
//如果nums1[si-1] > nums2[sj-1],那就是前者取多了,那我们就截断+递归去寻找。
//那么nums2 中的前 k/2个元素一定都小于等于第 k 小数,即nums2[j,sj-1]中元素。我们可以舍去这部分元素
//这道题核心就在上面这句话,通过截断来让时间复杂度下去,去掉无效的比对
if nums1[si-1] > nums2[sj-1] {
return find(nums1, i, nums2, sj, k-(sj-j))
} else {
return find(nums1, si, nums2, j, k-(si-i))
}
}
func Min(i, j int) int {
if i > j {
return j
}
return i
}
这里可以采用一个小技巧:
令 k1 = ( len(nums1) + len(nums2) + 1 ) // 2
令 k2 = ( len(nums1) + len(nums2) + 2 ) // 2
对于偶数情况,k1对应中间左边,k2对应中间右边
对于奇数情况,k1,k2都对应中间
所以我们得到了获得中位数的统一方法:(helper(k1)+helper(k2))/2
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
k1 = (len(nums1) + len(nums2) + 1 ) // 2
k2 = (len(nums1) + len(nums2) + 2 ) // 2
def helper(nums1,nums2,k): #本质上是找第k小的数
if(len(nums1) <len(nums2) ):
nums1, nums2 = nums2 , nums1 #保持nums1比较长
if(len(nums2)==0):
return nums1[k-1] # 短数组空,直接返回
if(k==1):
return min(nums1[0],nums2[0]) #找最小数,比较数组首位
t = min(k//2,len(nums2)) # 保证不上溢
if( nums1[t-1]>=nums2[t-1] ):
return helper(nums1 , nums2[t:],k-t)
else:
return helper(nums1[t:],nums2,k-t)
return (helper(nums1,nums2,k1) + helper(nums1,nums2,k2) ) /2
文章描述了如何在给定两个正序数组的情况下,使用递归和截断技巧找到它们合并后的中位数,算法的时间复杂度为O(log(m+n))。通过示例和代码实现展示了如何解决这个问题。
1030

被折叠的 条评论
为什么被折叠?



