老卫带你学---leetcode刷题(4. 寻找两个正序数组的中位数)

文章描述了如何在给定两个正序数组的情况下,使用递归和截断技巧找到它们合并后的中位数,算法的时间复杂度为O(log(m+n))。通过示例和代码实现展示了如何解决这个问题。
摘要由CSDN通过智能技术生成

4. 寻找两个正序数组的中位数

问题:

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:

nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106

解决:

思想,通过截断来让复杂度下降,通过递归来寻找符合条件的kth元素。
注释里有详细的介绍。

func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
	n := len(nums1) + len(nums2)
	if n%2 == 0 {
		l := find(nums1, 0, nums2, 0, n/2)
		r := find(nums1, 0, nums2, 0, n/2+1)
		return float64(l+r) / 2.0
	} else {
		return float64(find(nums1, 0, nums2, 0, n/2+1))
	}
}

func find(nums1 []int, i int, nums2 []int, j int, k int) int {

	//默认nums1的长度要小于等于nums2.
	if len(nums1)-i > len(nums2)-j {
		return find(nums2, j, nums1, i, k)
	}
	//递归边界1:k为1,直接返回两个数组的首元素
	if k == 1 {
		if i == len(nums1) {
			return nums2[j]
		} else {
			return Min(nums1[i], nums2[j])
		}
	}
	//递归边界2:当nums1为空,直接返回nums2的j+k-1元素
	if len(nums1) == i {
		return nums2[j+k-1]
	}
	si := Min(len(nums1), i+k/2)
	sj := j + k/2
	//如果nums1[si-1] > nums2[sj-1],那就是前者取多了,那我们就截断+递归去寻找。
	//那么nums2 中的前 k/2个元素一定都小于等于第 k 小数,即nums2[j,sj-1]中元素。我们可以舍去这部分元素
	//这道题核心就在上面这句话,通过截断来让时间复杂度下去,去掉无效的比对
	if nums1[si-1] > nums2[sj-1] {
		return find(nums1, i, nums2, sj, k-(sj-j))
	} else {
		return find(nums1, si, nums2, j, k-(si-i))
	}
}
func Min(i, j int) int {
	if i > j {
		return j
	}
	return i
}

这里可以采用一个小技巧:

令 k1 = ( len(nums1) + len(nums2) + 1 ) // 2
令 k2 = ( len(nums1) + len(nums2) + 2 ) // 2
对于偶数情况,k1对应中间左边,k2对应中间右边
对于奇数情况,k1,k2都对应中间
所以我们得到了获得中位数的统一方法:(helper(k1)+helper(k2))/2

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        k1 = (len(nums1) + len(nums2) + 1 ) // 2
        k2 = (len(nums1) + len(nums2) + 2 ) // 2
        def helper(nums1,nums2,k): #本质上是找第k小的数
            if(len(nums1) <len(nums2) ):
                nums1, nums2 = nums2 , nums1 #保持nums1比较长
            if(len(nums2)==0):
                return nums1[k-1] # 短数组空,直接返回
            if(k==1):
                return min(nums1[0],nums2[0])  #找最小数,比较数组首位
            t = min(k//2,len(nums2)) # 保证不上溢
            if( nums1[t-1]>=nums2[t-1] ):
                return helper(nums1 , nums2[t:],k-t)
            else:
                return helper(nums1[t:],nums2,k-t)
        return (helper(nums1,nums2,k1) + helper(nums1,nums2,k2) ) /2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值