老卫带你学---leetcode刷题(48. 旋转图像)

48. 旋转图像

问题:

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:


输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:


输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
提示:

n == matrix.length == matrix[i].length
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000

解决:

对于旋转类的的问题:
顺时针旋转90:先沿对角线反转矩阵,再沿竖中轴线反转矩阵;
顺时针旋转180:先沿横中轴线反转矩阵,再沿竖中轴线反转矩阵;
顺时针旋转270:先沿对角线反转矩阵,再沿横中轴线反转矩阵;

idx, halfLen := len(matrix)-1, len(matrix) / 2 // 记录最后一个元素的下标和边长的一半

// 按对角线反转矩阵
for i := range matrix {
    for j := 0; j < i; j++ {
        matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
    }
}

// 按竖中轴线反转矩阵
for i := range matrix {
    for j := 0; j < halfLen; j++ {
        matrix[i][j], matrix[i][idx-j] = matrix[i][idx-j], matrix[i][j]
    }
}

// 按横中轴线反转矩阵
for i := 0; i < helfLen; i++ {
    for j := range matrix[i] {
        matrix[idx-i][j], matrix[i][j] = matrix[i][j], matrix[idx-i][j]
    }
}

所以对于这道题,只需要先按对角线反转,再按照竖中轴反转就行

func rotate(matrix [][]int)  {
	idx,half_len := len(matrix)-1,len(matrix)/2

	// 按对角线反转矩阵
	for i:= range matrix{
		for j:=0;j<i;j++{
			matrix[i][j],matrix[j][i]=matrix[j][i],matrix[i][j]
		}
	}

	for i:= range matrix{
		for j:=0;j<half_len;j++{
			matrix[i][j],matrix[i][idx-j]=matrix[i][idx-j],matrix[i][j]
		}
	}
}
    def rotate(self, matrix: List[List[int]]) -> None:
        index,half=len(matrix)-1,len(matrix)//2

        for i in range(len(matrix)):
            for j in range(i):
                matrix[i][j],matrix[j][i]=matrix[j][i],matrix[i][j]
        
        for i in range(len(matrix)):
            for j in range(half):
                matrix[i][j],matrix[i][index-j]=matrix[i][index-j],matrix[i][j]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值