老卫带你学---leetcode刷题(221. 最大正方形)

该篇文章介绍了一个编程问题,如何在由0和1组成的二维矩阵中找到只包含1的最大正方形,并利用动态规划方法计算其面积。解决方案通过维护dp数组来追踪最大正方形的边长,最终返回最大面积。
摘要由CSDN通过智能技术生成

221. 最大正方形

问题:

在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。

示例 1:


输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:


输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:

输入:matrix = [["0"]]
输出:0
提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]'0''1'

解决:

dp

dp数组维护的正方形的变长

dp[i+1][j+1]=min(min(dp[i+1][j],dp[i][j+1]),dp[i][j])
那最大正方形的面积就是 最大的边长*最大的边长

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        n,m = len(matrix),len(matrix[0])
        dp = [[0 for _ in range (m+1)] for _ in range(n+1)]
        side=0
        
        for i in range(n):
            for j in range(m):
                if matrix[i][j]=="1":
                    dp[i+1][j+1]=min(min(dp[i+1][j],dp[i][j+1]),dp[i][j])+1
                    side=max(side,dp[i+1][j+1])
        return side*side
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值