Raft算法
在分布式系统中,我们通过多副本来提高整体系统的High availability,但是多副本就一定会出现consistency一致性问题。所以出现了很多的算法来去解决这类问题。
那解决一致性问题最根本的思想,就是将数据在一定的时间内同步到所有副本上。但是呢,中间可能出现节点故障、网络抖动、网络延迟顺序问题、使得问题更加复杂。
那consistency其实可以分为强一致性(CP)和弱一致性(AP),对应的算法场景也就不同
强一致性(其实raft就是paxos的演进):
- paxos
- fast paxos
- multi paxos:
- Raft系列:rocketmq的dledger、kafka的kraft
- ZAB系列:zookeeper
弱一致性:
- DNS
- Gossip(redis cluster在使用)
那其实Mysql的主从复制就是一个简单的弱一致性场景,只保证最终的一致性

Paxos
paxos核心在于两阶段决议,prepare+accept来决定最终的response,其实本质就是多数投票
- prepase阶段来检查正常的acceptor都有哪些
- accept阶段进行投票然后返回response

但是paxos每个请求都要进行两阶段,效率太低,所以后续出现了很多的优化。
Raft
raft其实是一种Multi Paxos,上面的其实是basic paxos每次处理一个请求,而multi paxos是每次处理多个请求
Raft的基本流程:
- 多个server共同选举一个Leader,负责响应客户端的请求
- Leader将数据分发到其他节点上
- 每个节点将数据作为Entry保留到Log上,该entry的状态为uncommited
- 如果多数节点都保留了该entry,就会将该entry的状态变为commited,并且由state machine告知客户端

Raft节点的状态流转:
每个节点其实有三个状态:Follower跟随者、Candidate候选者、Leader领导者
- Follower负责每次从Leader中同步数据,并且接收领导者的心跳
- 如果Follower们接收不到心跳后,就会变为Candidate进行选举
- 当重新选举出Leader后,节点们又变为Follower

本文探讨了在分布式系统中如何通过Raft算法解决一致性问题,介绍了强一致性(如Paxos和Raft系列)和弱一致性(如DNSGossip和MySQL主从复制)的区别。重点讲解了Raft算法的核心流程,包括Leader选举、数据同步和状态流转。
&spm=1001.2101.3001.5002&articleId=136179956&d=1&t=3&u=522049f2906f433a9c642c50db11f209)
439

被折叠的 条评论
为什么被折叠?



