老卫带你学---分布式系统(2)

本文探讨了在分布式系统中如何通过Raft算法解决一致性问题,介绍了强一致性(如Paxos和Raft系列)和弱一致性(如DNSGossip和MySQL主从复制)的区别。重点讲解了Raft算法的核心流程,包括Leader选举、数据同步和状态流转。
摘要由CSDN通过智能技术生成

Raft算法

在分布式系统中,我们通过多副本来提高整体系统的High availability,但是多副本就一定会出现consistency一致性问题。所以出现了很多的算法来去解决这类问题。

那解决一致性问题最根本的思想,就是将数据在一定的时间内同步到所有副本上。但是呢,中间可能出现节点故障、网络抖动、网络延迟顺序问题、使得问题更加复杂。

那consistency其实可以分为强一致性(CP)和弱一致性(AP),对应的算法场景也就不同

强一致性(其实raft就是paxos的演进):

  • paxos
  • fast paxos
  • multi paxos:
    • Raft系列:rocketmq的dledger、kafka的kraft
    • ZAB系列:zookeeper

弱一致性:

  • DNS
  • Gossip(redis cluster在使用)

那其实Mysql的主从复制就是一个简单的弱一致性场景,只保证最终的一致性

在这里插入图片描述

Paxos

paxos核心在于两阶段决议,prepare+accept来决定最终的response,其实本质就是多数投票

  1. prepase阶段来检查正常的acceptor都有哪些
  2. accept阶段进行投票然后返回response
    在这里插入图片描述
    但是paxos每个请求都要进行两阶段,效率太低,所以后续出现了很多的优化。
Raft

raft其实是一种Multi Paxos,上面的其实是basic paxos每次处理一个请求,而multi paxos是每次处理多个请求

Raft的基本流程:

  1. 多个server共同选举一个Leader,负责响应客户端的请求
  2. Leader将数据分发到其他节点上
  3. 每个节点将数据作为Entry保留到Log上,该entry的状态为uncommited
  4. 如果多数节点都保留了该entry,就会将该entry的状态变为commited,并且由state machine告知客户端
    raft

Raft节点的状态流转:
每个节点其实有三个状态:Follower跟随者、Candidate候选者、Leader领导者

  • Follower负责每次从Leader中同步数据,并且接收领导者的心跳
  • 如果Follower们接收不到心跳后,就会变为Candidate进行选举
  • 当重新选举出Leader后,节点们又变为Follower
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值