老卫带你学---SVM支持向量机

老卫带你学—SVM支持向量机

学习目标:

  1. 理解支持向量机的知识结构
  2. 理解支持向量机的原理与目标
  3. 理解算法推导的核心过程和意义(关键是损失函数约束条件的意义)
  4. 理解核函数的意义与方法

知识结构

hard margin SVM:可以容易的找到一条划分超平面来将两类分开;
soft margin SVM:不容易找到划分超平面,但是可以寻找到一条相对最好的;
Kelnel:将核函数应用于 SVM,增加其内积计算速度;(核函数只是一种计算方法,也可以用于其他方面)
对偶函数:将原来的问题转化为对偶形式,方便计算。
下面黄色的部分是重要的地方。
在这里插入图片描述
各种概念如下:
在这里插入图片描述
我们谈一谈支持向量机与逻辑回归的区别:
逻辑回归的损失函数是L=-ylog(y’)-(1-y)log(1-y’)
它所代表的含义就是,计算样本与划分面的距离损失,通过计算向量与边界法向量的内积来求距离(也就是投影),判断这个样本是否分类正确
而SVM对其进行一定的改造,认为超过一定的距离的样本是没有损失的,只需要计算划分面周围的向量,这些向量我们也称为支持向量
这就是逻辑回归与SVM最核心的区别

在这里插入图片描述(逻辑回归图)
在这里插入图片描述(SVM函数图像)
SVM的目标函数是:
左边的是原始SVM的目标函数,右边是对于松弛变量所加入的代价变量
下面的约束条件也引进松弛变量,使函数间隔加上松弛变量大于等于1.
在这里插入图片描述
这里要注意一个地方,在hard margin中没有损失函数,而在逻辑回归中损失函数与目标函数一样
下面我们看一下划分超平面:
在这里插入图片描述
在这里插入图片描述
但是SVM仅仅只需要考虑关于那几个支持向量(红线包括),不需要将所有的样本进行计算。
在这里插入图片描述
我们将分类问题中的输入空间特征空间看作两个空间
老卫语录:输入空间为欧式空间或离散空间;特征空间为欧式空间或希尔伯特空间
线性可分支持向量机(Hard Margin SVM)与线性支持向量机(Soft Margin SVM)将输入空间与特征空间元素一一对应;
非线性支持向量机将输入空间通过非线性映射映射为特征空间。
总体来说,支持向量机的学习都是在特征空间中进行

在这里插入图片描述
超平面的函数与决策函数如下
其中W是超平面的法向量,法向量指向的是正类;
x就是样本向量;
b为截距。
φ(x)就是前面说的映射函数
在这里插入图片描述
下面我们开始推导目标函数:
在这里插入图片描述
在这里插入图片描述
在这里我们将min后面的一坨通过约束条件处理掉,因为约束条件是大于等于1,而目标函数中是min,我们干脆直接取1
在这里插入图片描述
然后求W分之1的最大值,其实就是求W的平方的最小值。1/2是为了后面的求导方便而设计的。
W的绝对值就是L1正则化;W的平方就是L2正则化。
在这里插入图片描述

对偶函数

有时候为了计算方便,我们将原始问题转换为对偶问题来解决。(详情请看蓝皮书p103)
转换对偶函数
在这里插入图片描述
L对W,b分别求偏导
在这里插入图片描述
然后再将偏导结果带入上式
在这里插入图片描述
继续求对a的极大
在这里插入图片描述
添加负号,转化为min问题
在这里插入图片描述
最后可以由a求得w,b的解。
在这里插入图片描述

线性支持向量机

对于有的时候,我们的问题是线性不可分的,我们需要对相关细节进行改造。
通常情况是,训练数据中有一些特异点,将这些特异点去除后,剩下大部分的样本点组成的集合还是线性可分的。
老卫语录:线性不可分指的是某些样本点不能满足函数间隔大于等于1的约束条件。
为了解决这样的问题,我们对每个样本引进一个松弛变量,使函数间隔加上松弛变量大于等于1.
在这里插入图片描述
所以线性SVM的目标函数如下:
在这里插入图片描述
和Hard Margin问题一样,为了计算方便,我们将原始问题转化为对偶函数,然后对w,b,松弛变量进行求导。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以线性支持向量机的学习算法如下:
在这里插入图片描述
在这里插入图片描述
LR与SVM的损失函数图像对比:
在这里插入图片描述

非线性支持向量机

有的时候我们的问题不是线性的,我们需要通过映射函数φ,将非线性问题转化为线性问题,数据从低维映射至高维。
在这里插入图片描述
在这里插入图片描述
对于核函数的类别可以看蓝皮书p122常用的核函数。

LR与SVM的区别:

  1. 损失函数不同,SVM采用的Hinge损失,而LR采用的是交叉熵损失;
  2. SVM仅考虑支持向量;
  3. SVM有约束条件;
  4. LR的可解释性更强;
  5. SVM不能给出概率结果;
  6. SVM对非线性问题采用核函数的方法速度更快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值