因为每一种宝珠都要保证至少有l[i]个,平移一下区间,问题就转化成了需要选择M'=M-\sum_i l[i]个宝珠,每个宝珠最少选0个,最多选r[i]-l[i]个。假设每个宝珠选择x[i]个,这么问题变成了不定方程整数解个数的问题:sum x[i]=M',subject to 0<=x[i]<=r[i]-l[i]。如果没有上界限制,用隔板法就能得出来,然后我就懵逼了。。
后来想了想,枚举方程的解的个数,暴力做的方法,就是看x[0]可以有哪些取值,固定x[0]的一个值之后,x[1]又有哪些取值。这就构成了一种递推关系,所以用dp就能做了。其实也有点像背包。
dp[i][j]表示0,..,i个宝珠,选择的总数=j时有多少种选法。对于第i个宝珠,可以选择的个数是0 to r[i]-l[i]个,递推关系是dp[i][j]=sum_{0<=k<=r[i]-l[i]}dp[i-1][j-k]。如果0,...,i-1个宝珠没有总数=j-k的方案,dp[i-1][j-k]=0,对结果也没影响。
#include<iostream>
#include<stdio.h>
#include<cstdio>
#include<string>
#include<cmath>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
// nowcoder girl problem 6
const int maxn=30;
long long ans;
int N;
int M;
int l[maxn];
int r[maxn];
int upper[maxn];
long long dp[22][102];
bool valid[22][102];
int main()
{
freopen("input.txt","r",stdin);
while(cin>>N>>M)
{
memset(r,0,sizeof(r));
memset(l,0,sizeof(l));
memset(upper,0,sizeof(upper));
memset(dp,0,sizeof(dp));
memset(valid,false,sizeof(valid));
ans=0;
for(int i=0;i<N;i++)
{
cin>>l[i]>>r[i];
upper[i]=r[i]-l[i];
M-=l[i];
}
for(int j=0;j<=upper[0];j++)
{
dp[0][j]=1;
valid[0][j]=true;
}
for(int i=1;i<N;i++)
{
//cout<<"i "<<i<<endl;
for(int j=0;j<=M;j++)
{
// cout<<"j "<<j<<endl;
for(int k=0;k<=min(j,upper[i]);k++)
{
int pre=j-k;
//cout<<"pre "<<pre<<endl;
if(valid[i-1][pre]==true)
{
dp[i][j]=dp[i][j]+dp[i-1][pre];
valid[i][j]=true;
}
}
}
}
cout<<dp[N-1][M]<<endl;
// for(int i=0;i<N;i++)
// {
// for(int j=0;j<=M;j++)
// {
// cout<<dp[i][j]<<" ";
// }
// cout<<endl;
// }
}
return 0;
}