Problem C. King's Circle Google Kickstart Round B 2018 [Small input]

题意:2D平面中给一系列点,存在多少种三个点的组合使得存在一个于坐标轴平行的正方形使得至少三个点在正方形的边上。

因为组合只有三个点,可以由此入手利用某些性质。

对于一个triplet,如果存在一个正方形,那么一定也存在一个minimum size的长方形使得三个点在边上。如果对于triplet a,b,c,不存在这样的长方形,下面三种情况存在且仅有一种存在

1. a,b为顶点画一个长方形,c在长方形内部

2. b,c为顶点画一个长方形,a在长方形内部

1. a,c为顶点画一个长方形,b在长方形内部

所以可以枚举顶点a,b,如果有x点在a,b围成的长方形内部,那么就有x个invalid triplet。最后的结果就是C(N,3) - # of invalid triplet。

对于每个长方形内部的点的个数,可以通过前缀和O(1)求出。presum[i,j]表示[0,0] to [i,j]的区域内点的个数。

#include<iostream>
#include<stdio.h>
#include<cstdio>
#include<string>
#include<cmath>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<windows.h>
using namespace std;
//Problem C. King's Circle Kickstart Round B 2018
const int maxn=1010;
int T;
int N;
int A;
int B;
int C;
int D;
int E;
int F;
int M;
int V[maxn];
int H[maxn];
int presum[maxn][maxn];//pre sum of # of nodes in rectangular (0,0) to (i,j) inclusive
int mp[maxn][maxn];
int ans;
int main()
{
//    freopen("input.txt","r",stdin);
    freopen("C-small-practice.in","r",stdin);
    freopen("C.txt","w",stdout);
    cin>>T;
    for(int ca=1;ca<=T;ca++)
    {
        memset(H,0,sizeof(H));
        memset(V,0,sizeof(V));
        memset(presum,0,sizeof(presum));
        memset(mp,0,sizeof(mp));
        ans=0;
        scanf("%d %d %d %d %d %d %d %d %d %d",&N,&V[1],&H[1],&A,&B,&C,&D,&E,&F,&M);
        for(int i=2;i<=N;i++)
        {
            V[i]=A*V[i-1]%M+B*H[i-1]%M+C%M;
            V[i]%=M;
            H[i]=D*V[i-1]%M+E*H[i-1]%M+F%M;
            H[i]%=M;

        }
        for(int i=1;i<=N;i++)
        {
            V[i]+=1;// make all axis starts from 1
            H[i]+=1;
            mp[V[i]][H[i]]=1;
        }
//        for(int i=1;i<=N;i++)
//        {
//            cout<<V[i]<<" "<<H[i]<<endl;
//        }
        for(int i=1;i<=M;i++)
        {
            for(int j=1;j<=M;j++)
            {
                presum[i][j]=presum[i-1][j]+presum[i][j-1]-presum[i-1][j-1]+mp[i][j];
            }
        }
//        for(int i=1;i<=M;i++)
//        {
//            for(int j=1;j<=M;j++)
//            {
//                cout<<mp[i][j]<<" ";
//            }
//            cout<<endl;
//        }
        for(int i=1;i<=N;i++)
        {
            for(int j=i+1;j<=N;j++)
            {
                if(V[i]==V[j])
                {
                    continue;
                }
                if(H[i]==H[j])
                {
                    continue;
                }
                int tmp=0;
                if(V[i]<V[j])
                {
                    if(H[i]>H[j])
                    {
                        //...j
                        //....
                        //i...
                        tmp=presum[V[j]-1][H[i]-1]-presum[V[i]][H[i]-1]-presum[V[j]-1][H[j]]+presum[V[i]][H[j]];
                    }
                    else
                    {
                        //i...
                        //....
                        //...j
                        tmp=presum[V[j]-1][H[j]-1]-presum[V[i]][H[j]-1]-presum[V[j]-1][H[i]]+presum[V[i]][H[i]];
                    }
                }
                else
                {
                    if(H[i]>H[j])
                    {
                        //j...
                        //....
                        //...i
                        tmp=presum[V[i]-1][H[i]-1]-presum[V[j]][H[i]-1]-presum[V[i]-1][H[j]]+presum[V[j]][H[j]];
                    }
                    else
                    {
                        //...i
                        //....
                        //j...
                        tmp=presum[V[i]-1][H[j]-1]-presum[V[j]][H[j]-1]-presum[V[i]-1][H[i]]+presum[V[j]][H[i]];
                    }
                }
//                cout<<"i "<<i<<" j "<<j<<" tmp "<<tmp<<endl;
                ans+=tmp;
            }
        }
        int tot=N*(N-1)*(N-2)/6;
//        cout<<"tot "<<tot<<" ans "<<ans<<endl;
        ans=tot-ans;
        printf("Case #%d: %d\n", ca, ans);
        cerr<<"finish case "<<ca<<endl;

    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值