tensorflow深度学习初学笔记之Session()对象 Variable变量 placeholder传值

话不多说,想说的话全在代码注释里面了!

首先介绍一下Session()

import tensorflow as tf
import numpy as np
#介绍使用Session()
matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])
#matrix multiply 矩阵乘法
# numpy中使用矩阵的乘法就是np.dot(m1,m2)
product = tf.matmul(matrix1,matrix2)   

#method 1 方法一
sess = tf.Session()   #这个Session是个对象,首字母被大写
result = sess.run(product)  #执行product,每run一次执行一次结构,将结果返回给result
print(result);
sess.close();

#method 2 方法二
with tf.Session() as sess:  #我打开了Session,并命名为sess,不用理会关闭问题,运行完毕后自动关闭
    result2 = sess.run(product);
    print(result2)

运行结果:
在这里插入图片描述

再来介绍一下TensorFlow中的Variable变量的简单利用

#介绍使用Variable变量
import tensorflow as tf
state = tf.Variable(0,name='counter');   #一定要定义成是一个变量才是一个变量
#print(state.name);
one = tf.constant(1);   #常量1
new_value = tf.add(state , one);
update = tf.assign(state,new_value);   #将new_value的值赋给state

#关于变量最重要的一步:初始化所有的变量,然后使用Session().run才算激活
init = tf.initialize_all_variables()   #定义变量所必须的一步

with tf.Session() as sess:
    sess.run(init)    #只有这里run一次,才激活了init的初始化
    for _ in range(3):
        sess.run(update);
        print(sess.run(state));

运行结果:
在这里插入图片描述

placeholder传值

import tensorflow as tf
input1 = tf.placeholder(tf.float32);
input2 = tf.placeholder(tf.float32);

output = tf.multiply(input1,input2);   #两数相乘

with tf.Session() as sess:
    #用了placeholder就是每次要传一个值,传值的实际就是sess.run的时候,形式是feed_dict这样以字典的形式
    print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}));

运行结果:
在这里插入图片描述

发布了19 篇原创文章 · 获赞 6 · 访问量 6728
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览