pat L2-008 最长对称子串

L2-008. 最长对称子串

时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越

对给定的字符串,本题要求你输出最长对称子串的长度。例如,给定"Is PAT&TAP symmetric?",最长对称子串为"s PAT&TAP s",于是你应该输出11。

输入格式:

输入在一行中给出长度不超过1000的非空字符串。

输出格式:

在一行中输出最长对称子串的长度。

输入样例:
Is PAT&TAP symmetric?
输出样例:
11


这道题在训练赛中做过看了别人的代码,结果到了比赛中还是不会写,只有靠自己想出来的思维才能留在记忆的深处,靠理解记忆虽然可以进步很快

但是不是自己想出来的思维不通过反复训练的话并不会在脑海中保留太长时间。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <sstream>
using namespace std;
#define N 100000
int p[N];
char str[N];

int main()
{
    gets(str);
    int len=strlen(str);
    for(int i=len;i>=0;i--)
    {
        str[i+i+2]=str[i];
        str[i+i+1]='#';
    }
    str[0]='*';
    int id=0, maxt=0;
    for(int i=2;i<2*len+1;i++)
    {
        if(id+p[id]>i)
        {
            p[id]=min(p[id+id-i],p[id]+id-i);
        }
        else
        {
            p[i]=1;
        }
        while(str[i-p[i]]==str[i+p[i]])
        {
            p[i]++;
        }
        if(i+p[i]>id+p[id])
        {
            id=i;
        }
        if(p[i]>=maxt)
        {
            maxt=p[i];
        }
    }
    cout<<maxt-1<<endl;
    return 0;
}


下面借鉴了大神的思维方式用DP的最优解解决,方法真的很巧妙

manacher算法:

定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长

将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i]就是最长回文串长度,则问题是如何去求p[i]?

由于s是从前扫到后的,所以需要计算p[i]时一定已经计算好了p[1]....p[i-1]

假设现在扫描到了i+k这个位置,现在需要计算p[i+k]

定义maxlen是i+k位置前所有回文串中能延伸到的最右端的位置,即maxlen=p[i]+i;//p[i]+i表示最大的

分两种情况:

1.i+k这个位置不在前面的任何回文串中,即i+k>maxlen,则初始化p[i+k]=1;//本身是回文串

然后p[i+k]左右延伸,即while(s[i+k+p[i+k]] == s[i+k-p[i+k]])++p[i+k]

2.i+k这个位置被前面以位置i为中心的回文串包含,即maxlen>i+k

这样的话p[i+k]就不是从1开始


由于回文串的性质,可知i+k这个位置关于i与i-k对称,

所以p[i+k]分为以下3种情况得出

//黑色是i的回文串范围,蓝色是i-k的回文串范围,






展开阅读全文

没有更多推荐了,返回首页