引言
本文是SBERT(Sentence-BERT)论文1的笔记。SBERT主要用于解决BERT模型无法很好地得到句向量的问题。
核心思想
虽然BERT模型可以计算句子对之间的语义相似度,但是它需要句子对拼接在一起然后输入给BERT模型。如果需要计算10000个句子相互之间的相似度,则需要计算 10000 ⋅ ( 10000 − 1 ) / 2 = 49995000 10000 \cdot(10000-1)/2=49995000
Sentence-BERT(SBERT)通过Siamese和Triplet网络改进BERT,生成句向量,解决大规模语义相似度计算问题。通过在NLI和STS数据集上的训练和评估,SBERT表现出优秀的句子相似度计算能力。
本文是SBERT(Sentence-BERT)论文1的笔记。SBERT主要用于解决BERT模型无法很好地得到句向量的问题。
虽然BERT模型可以计算句子对之间的语义相似度,但是它需要句子对拼接在一起然后输入给BERT模型。如果需要计算10000个句子相互之间的相似度,则需要计算 10000 ⋅ ( 10000 − 1 ) / 2 = 49995000 10000 \cdot(10000-1)/2=49995000

被折叠的 条评论
为什么被折叠?