[论文笔记]Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

Sentence-BERT(SBERT)通过Siamese和Triplet网络改进BERT,生成句向量,解决大规模语义相似度计算问题。通过在NLI和STS数据集上的训练和评估,SBERT表现出优秀的句子相似度计算能力。
摘要由CSDN通过智能技术生成

引言

本文是SBERT(Sentence-BERT)论文1的笔记。SBERT主要用于解决BERT模型无法很好地得到句向量的问题。

核心思想

虽然BERT模型可以计算句子对之间的语义相似度,但是它需要句子对拼接在一起然后输入给BERT模型。如果需要计算10000个句子相互之间的相似度,则需要计算 10000 ⋅ ( 10000 − 1 ) / 2 = 49995000 10000 \cdot(10000-1)/2=49995000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值