十年后的回归

翻翻以前的博客,发现竟然是十年前的文章了。

时间过的太快了。

今年开始,要重新回归,加强技术的积累与分享。

### 过去十年及未来十年二氧化碳浓度变化趋势的数据分析方法 对于过去十年及未来十年二氧化碳浓度变化的趋势分析,可以采用多种数据分析技术和工具。这些技术不仅能够帮助理解历史数据中的模式,还能对未来做出合理的预测。 #### 数据收集与预处理 为了进行有效的二氧化碳浓度变化趋势分析,首先需要获取高质量的历史数据集。通常可以从政府机构或科研组织发布的公开数据库中获得这类数据[^1]。一旦获得了原始数据,就需要对其进行清洗和预处理,以去除异常值并填补缺失值,从而确保后续分析的有效性和准确性。 #### 描述性统计分析 在完成数据准备之后,可以通过计算基本的描述性统计数据来初步了解二氧化碳水平随时间的变化情况。这包括但不限于: - **均值** 和 **中位数**:用于衡量中心位置; - **百分位数** 或者 **四分位距 (IQR)** :评估分布形态; 通过绘制折线图、柱状图以及箱形图等方式可视化上述指标的结果,有助于更清晰地展现CO₂排放量的时间序列特征及其季节性变动规律[^2]。 #### 时间序列建模与预测 针对长期趋势的研究,则需借助于专门的时间序列模型来进行拟合与外推估计。常见的几种算法如下所示: - **ARIMA(AutoRegressive Integrated Moving Average)** 自回归积分滑动平均模型适用于平稳过程下的短期至中期预报; ```python from statsmodels.tsa.arima.model import ARIMA model = ARIMA(co2_data, order=(p,d,q)) fitted_model = model.fit() forecasted_values = fitted_model.forecast(steps=10*12) # 预测未来十年每月数值 ``` - **Prophet** 是由Facebook开发的一款易于使用的开源库,在处理具有明显周期性的非线性增长曲线方面表现出色; ```python import pandas as pd from fbprophet import Prophet df = pd.DataFrame({'ds': dates, 'y': co2_levels}) m = Prophet(yearly_seasonality=True) m.fit(df) future = m.make_future_dataframe(periods=10*12, freq='M') forecast = m.predict(future) fig = m.plot(forecast) ``` 除了以上两种经典的方法之外,还可以考虑利用机器学习框架构建更加复杂的混合型预测器,比如LSTM(Long Short-Term Memory Networks),它特别适合捕捉长时间跨度内的依赖关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值