Java详解LeetCode 热题 100(01):LeetCode 1. 两数之和(Two Sum)详解

1. 题目描述

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

提示:

  • 2 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9
  • -10^9 <= target <= 10^9
  • 只会存在一个有效答案

进阶: 你可以想出一个时间复杂度小于 O(n²) 的算法吗?

2. 理解题目

这道题的意思很简单:从数组中找出两个数,使它们的和等于目标值 target,并返回这两个数的下标。

关键点:

  1. 数组中只有一组符合条件的答案
  2. 同一个元素不能使用两次
  3. 可以按任意顺序返回答案

3. 解法一:暴力枚举法

3.1 思路

最直观的方法是使用两层嵌套循环:

  • 第一层循环遍历数组中的每个元素 x
  • 第二层循环寻找是否存在另一个值等于 target - x

这种方法的时间复杂度为 O(n²),空间复杂度为 O(1)。

3.2 Java代码实现

public class Solution {
    public int[] twoSum(int[] nums, int target) {
        int n = nums.length;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                if (nums[i] + nums[j] == target) {
                    return new int[]{i, j};
                }
            }
        }
        // 根据题意,一定有解,所以这行代码不会执行
        return new int[]{-1, -1};
    }
}

3.3 代码详解

  1. 外层循环从索引 0 开始遍历数组
  2. 内层循环从索引 i+1 开始遍历数组(避免重复检查同一对数字)
  3. 判断当前两个数的和是否等于目标值 target
  4. 如果找到符合条件的两个数,立即返回它们的索引数组
  5. 由于题目保证有唯一解,所以最后的 return 语句不会被执行

3.4 复杂度分析

  • 时间复杂度:O(n²),其中 n 是数组的长度。最坏情况下,我们需要遍历所有的数对,共有 n(n-1)/2 个。
  • 空间复杂度:O(1),只使用了常数额外空间。

3.5 适用场景

当数组较小时,暴力法简单直接,容易实现。但对于大型数组,这种方法效率较低。

4. 解法二:哈希表法

4.1 思路

通过哈希表可以优化搜索过程。我们可以将数组中的每个元素及其索引存储在哈希表中,然后对于每个元素 x,检查哈希表中是否存在 target - x。

具体步骤:

  1. 创建一个哈希表,用于存储数组元素值及其索引
  2. 遍历数组,对于每个元素 x:
    • 计算补数值 complement = target - x
    • 检查哈希表中是否已存在补数值 complement
    • 如果存在,返回补数值的索引和当前元素的索引
    • 如果不存在,将当前元素及其索引存入哈希表

这种方法的时间复杂度降至 O(n),但空间复杂度增加到 O(n)。

4.2 Java代码实现

import java.util.HashMap;
import java.util.Map;

public class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement)) {
                return new int[]{map.get(complement), i};
            }
            map.put(nums[i], i);
        }
        // 根据题意,一定有解,所以这行代码不会执行
        return new int[]{-1, -1};
    }
}

4.3 代码详解

  1. 创建一个 HashMap,键为数组元素的值,值为对应的索引
  2. 遍历数组,对于每个元素 nums[i]:
    • 计算它的补数:complement = target - nums[i]
    • 检查 HashMap 中是否已包含这个补数
    • 如果包含,说明找到了答案,返回两个索引
    • 如果不包含,将当前元素及其索引添加到 HashMap 中
  3. 每次添加新元素前先检查补数,确保可以立即找到答案

4.4 复杂度分析

  • 时间复杂度:O(n),其中 n 是数组的长度。对于每个元素,我们只需要 O(1) 的时间查找 HashMap。
  • 空间复杂度:O(n),其中 n 是数组的长度。最坏情况下,HashMap 需要存储 n 个元素。

4.5 适用场景

对于大多数情况,哈希表法是首选方案,因为它在保持较低空间复杂度的同时,显著提高了时间效率。

5. 解法三:两遍哈希表法

5.1 思路

两遍哈希表法也使用哈希表,但通过两次遍历来实现:

  1. 第一次遍历:将所有元素及其索引存入哈希表
  2. 第二次遍历:检查每个元素的补数是否在哈希表中

5.2 Java代码实现

import java.util.HashMap;
import java.util.Map;

public class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        
        // 第一遍:构建哈希表
        for (int i = 0; i < nums.length; i++) {
            map.put(nums[i], i);
        }
        
        // 第二遍:查找补数
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement) && map.get(complement) != i) {
                return new int[]{i, map.get(complement)};
            }
        }
        
        // 根据题意,一定有解,所以这行代码不会执行
        return new int[]{-1, -1};
    }
}

5.3 代码详解

  1. 创建一个 HashMap,存储数组元素和其索引
  2. 第一遍遍历:将所有元素及其索引添加到 HashMap 中
  3. 第二遍遍历:对于每个元素,检查其补数是否在 HashMap 中
  4. 注意条件 map.get(complement) != i,确保不使用同一个元素两次
  5. 找到符合条件的元素对后立即返回结果

5.4 复杂度分析

  • 时间复杂度:O(n),需要进行两次遍历,每次 O(n)。
  • 空间复杂度:O(n),需要额外的哈希表存储数组元素及其索引。

5.5 对比一遍哈希表法

一遍哈希表法更加高效,因为它只需要遍历数组一次就能找到答案。但两遍哈希表法的思路可能更容易理解,尤其对于初学者。

6. 解法四:排序双指针法

6.1 思路

这种方法首先对数组进行排序,然后使用双指针从两端向中间移动:

  1. 创建一个包含原数组元素和索引的新数组
  2. 对新数组按元素值排序
  3. 使用左右指针从两端向中间移动
  4. 如果两指针元素之和等于目标值,返回对应的原始索引

注意:排序会改变元素的原始位置,所以需要额外存储原始索引。

6.2 Java代码实现

import java.util.Arrays;

public class Solution {
    public int[] twoSum(int[] nums, int target) {
        int n = nums.length;
        
        // 创建一个二维数组,存储元素值和原始索引
        int[][] pairs = new int[n][2];
        for (int i = 0; i < n; i++) {
            pairs[i][0] = nums[i];
            pairs[i][1] = i;
        }
        
        // 按元素值排序
        Arrays.sort(pairs, (a, b) -> Integer.compare(a[0], b[0]));
        
        // 双指针搜索
        int left = 0;
        int right = n - 1;
        
        while (left < right) {
            int sum = pairs[left][0] + pairs[right][0];
            
            if (sum == target) {
                return new int[]{pairs[left][1], pairs[right][1]};
            } else if (sum < target) {
                left++;
            } else {
                right--;
            }
        }
        
        // 根据题意,一定有解,所以这行代码不会执行
        return new int[]{-1, -1};
    }
}

6.3 代码详解

  1. 创建一个二维数组 pairs,存储每个元素的值和原始索引
  2. 按元素值对 pairs 进行排序
  3. 使用双指针 left 和 right 分别指向排序后数组的两端
  4. 计算当前指针指向的两个元素之和 sum
  5. 如果 sum 等于 target,返回这两个元素的原始索引
  6. 如果 sum 小于 target,将 left 向右移动一位(增加 sum)
  7. 如果 sum 大于 target,将 right 向左移动一位(减小 sum)
  8. 重复步骤 4-7 直到找到答案

6.4 复杂度分析

  • 时间复杂度:O(n log n),主要是排序所需的时间。
  • 空间复杂度:O(n),需要额外的空间存储排序后的数组和原始索引。

6.5 适用场景

当数组已经排序或者允许修改原数组时,这种方法也是很有效的。对于很大的数组,排序的代价可能超过哈希表法。

7. 进阶思考与变体问题

7.1 如何处理数组中有重复元素的情况?

本题中,即使数组中有重复元素,只要它们的和等于 target,就是有效的答案。哈希表法通过索引判断可以正确处理重复元素。

例如:

nums = [3, 3], target = 6

哈希表法的处理流程:

  1. 遍历到 nums[0] = 3 时,计算补数 6 - 3 = 3,哈希表中尚未包含 3,添加 (3, 0)
  2. 遍历到 nums[1] = 3 时,计算补数 6 - 3 = 3,哈希表已包含 3,返回 [0, 1]

7.2 如果题目要求返回所有可能的解怎么办?

对于返回所有可能解的变体,我们可以修改算法:

  • 不在找到一个解后立即返回
  • 继续搜索并收集所有满足条件的索引对
  • 注意去重,避免返回相同的索引对
import java.util.*;

public class Solution {
    public List<int[]> twoSumAll(int[] nums, int target) {
        List<int[]> result = new ArrayList<>();
        Map<Integer, List<Integer>> map = new HashMap<>();
        
        // 构建哈希表,处理重复元素
        for (int i = 0; i < nums.length; i++) {
            if (!map.containsKey(nums[i])) {
                map.put(nums[i], new ArrayList<>());
            }
            map.get(nums[i]).add(i);
        }
        
        // 检查每个元素
        Set<String> seen = new HashSet<>(); // 用于去重
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement)) {
                for (int j : map.get(complement)) {
                    if (j > i) { // 确保不重复且不使用同一元素
                        String pair = i + "," + j; // 创建唯一标识
                        if (!seen.contains(pair)) {
                            result.add(new int[]{i, j});
                            seen.add(pair);
                        }
                    }
                }
            }
        }
        
        return result;
    }
}

7.3 三数之和、四数之和等扩展问题

LeetCode 上有这题的扩展问题:

这些问题可以用类似的思路解决,但需要更复杂的实现:

  • 三数之和:固定一个数,然后在剩余数组中寻找两数之和
  • 四数之和:固定两个数,然后在剩余数组中寻找两数之和

8. 常见错误与优化

8.1 常见错误

  1. 忽略数组中的重复元素

    // 错误做法
    if (map.containsKey(complement)) {
        // 如果complement和nums[i]是同一个元素,这里会错误地使用同一元素两次
        return new int[]{map.get(complement), i};
    }
    

    正确的做法是确保不使用同一个元素两次:

    if (map.containsKey(complement) && map.get(complement) != i) {
        return new int[]{map.get(complement), i};
    }
    
  2. 哈希表更新错误

    // 错误做法:先将元素添加到哈希表再检查,可能导致使用同一元素两次
    map.put(nums[i], i);
    if (map.containsKey(target - nums[i])) {
        // ...
    }
    

    正确的做法是先检查再添加:

    int complement = target - nums[i];
    if (map.containsKey(complement)) {
        // ...
    }
    map.put(nums[i], i);
    

8.2 性能优化

  1. 预估哈希表大小:如果大致知道数组大小,可以在创建哈希表时预设容量,减少再哈希的次数。

    Map<Integer, Integer> map = new HashMap<>(nums.length);
    
  2. 提前返回:一旦找到答案就立即返回,不需要继续遍历。

  3. 处理特殊情况:对于特别小的数组(如长度为2),可以直接检查而不使用哈希表。

    if (nums.length == 2) {
        return new int[]{0, 1};
    }
    

9. 完整的 Java 解决方案

下面是结合了各种最佳实践的最优解法:

import java.util.HashMap;
import java.util.Map;

class Solution {
    public int[] twoSum(int[] nums, int target) {
        // 处理边界情况
        if (nums == null || nums.length < 2) {
            throw new IllegalArgumentException("输入数组至少需要两个元素");
        }
        
        // 特殊情况:只有两个元素
        if (nums.length == 2) {
            return new int[]{0, 1};
        }
        
        // 创建哈希表,用于存储元素值及其索引
        Map<Integer, Integer> numMap = new HashMap<>(nums.length);
        
        // 一次遍历
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            
            // 检查互补元素是否已在哈希表中
            if (numMap.containsKey(complement)) {
                return new int[]{numMap.get(complement), i};
            }
            
            // 将当前元素加入哈希表
            numMap.put(nums[i], i);
        }
        
        // 根据题意一定有解,但为了代码完整性,添加这行
        throw new IllegalArgumentException("无解");
    }
}

10. 实际运用示例

10.1 LeetCode提交结果

哈希表法在LeetCode上提交的结果通常如下:

  • 执行用时:1-2 ms(击败约 99% 的 Java 提交)
  • 内存消耗:38-39 MB(击败约 80% 的 Java 提交)

10.2 应用场景

两数之和问题在实际编程中有很多应用场景,例如:

  • 在金融系统中寻找交易对
  • 在数据分析中查找数据对
  • 在游戏开发中配对玩家
  • 在算法设计中作为子问题出现

10.3 扩展用例

public class TwoSumApplication {
    public static void main(String[] args) {
        // 基本测试用例
        test(new int[]{2, 7, 11, 15}, 9);
        test(new int[]{3, 2, 4}, 6);
        test(new int[]{3, 3}, 6);
        
        // 边界测试用例
        test(new int[]{1, 5}, 6);
        test(new int[]{1, 2, 3, 4, 5}, 9);
        
        // 大数组测试
        int[] largeArray = new int[10000];
        for (int i = 0; i < 10000; i++) {
            largeArray[i] = i;
        }
        test(largeArray, 19998);
    }
    
    private static void test(int[] nums, int target) {
        Solution solution = new Solution();
        int[] result = solution.twoSum(nums, target);
        System.out.printf("输入:nums = %s, target = %d\n", 
                          Arrays.toString(nums), target);
        System.out.printf("输出:%s\n", Arrays.toString(result));
        System.out.printf("验证:%d + %d = %d\n\n", 
                          nums[result[0]], nums[result[1]], target);
    }
}

11. 总结与技巧

11.1 解题要点

  1. 理解问题:确保理解题目要求,包括输入限制和预期输出。
  2. 暴力法:先考虑最简单的解法,帮助理解问题。
  3. 优化:使用哈希表将查找复杂度从 O(n) 降低到 O(1)。
  4. 特殊处理:处理边界情况和特殊输入。
  5. 代码风格:编写清晰、高效、易于理解的代码。

11.2 学习收获

通过学习两数之和问题,可以掌握:

  • 哈希表的应用
  • 双指针技巧
  • 空间换时间的思想
  • 算法效率分析方法

11.3 面试技巧

在面试中遇到类似问题时:

  1. 先讨论最直观的解法(暴力法)
  2. 分析其时间和空间复杂度的瓶颈
  3. 提出优化思路(例如使用哈希表)
  4. 讨论进一步的优化可能性
  5. 考虑边界情况和错误处理

12. 参考资料

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈凯哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值