从直观到深入理解傅里叶变换

直观的理解傅里叶变换

作者初学傅里叶变换时,就一直没有弄明白傅里叶到底是什么东西,只是死记硬背通过了考试,但后来发现在实际的应用时需要理解傅里叶变换。所以查阅了很多资料,最终理解了傅里叶变换及其公式推导。现在总结一下。
首先,需要知道傅里叶变换是做什么的?有什么用? 这里我推荐几个视频,可以说是通俗易通,大家可以看完视频后,再学习公式。

src="//player.bilibili.com/player.html?aid=19141078&cid=31220967&page=1" scrolling="no" border="0" allowfullscreen="true"> src="//player.bilibili.com/player.html?aid=26327910&cid=73938398&page=1" scrolling="no" border="0" allowfullscreen="true">

傅里叶公式推导

我相信通过以上两个视频,大家应该对傅里叶有了一个大概的了解。作者的理解就是,傅里叶变换就是提取组合波形的频率和对应频率的**“幅值”**。
先上一下傅里叶级数的公式,并推导它:
在这里插入图片描述
经过上面的视频,我们知道了任意一个波形都可以用无数个正弦波或余弦波来拟合。
在这里插入图片描述
在这里插入图片描述
在进行对a0进行推导之前,我们先了解一下三角函数的正交性:
一个三角函数系:1,cosx , sinx , cos2x , sin2x , … , cosnx , sinnx , … 如果这一堆函数(包括常数1)中任何两个不同函数的乘积在区间[-π, π]上的积分等于零,就说三角函数系在区间[-π, π]上正交 于是有一下几个公式:
在这里插入图片描述
前三个公式比较好理解,第四个公式推导如下:
在这里插入图片描述
此外,我画了一副图,帮助理解后三个公式:
在这里插入图片描述

a0的推导

我们回到对傅里叶级数公式的推导中:
在这里插入图片描述
这样,我们就得出a0

an 和bn的推导

用cos(kwt)乘以6式的两边:
在这里插入图片描述
此时,an 和bn就已经推导出来了傅里叶级数就如下计算:
在这里插入图片描述

傅里叶变换

好了,我们已经清楚的知道傅里叶级数是怎么来的了,下面我们来看看傅里叶变换。
我们会用到一个重要的公式,欧拉公式:
ejnwt=cos(nwt)+jsin(nwt)
e-jnwt=cos(nwt)-jsin(nwt)
所以: cos(nwt) = 1/2*(ejwnt+e-jwnt)
sin(nwt) = 1/2j * (ejnwt-e-jwnt)
将其带入傅里叶级数,得到:
在这里插入图片描述

我们假设F0 Fn 和 F-n,并将an和bn带入得到:
在这里插入图片描述
在这里插入图片描述
到这里,我们就可以得出傅里叶变换:
在这里插入图片描述
回顾前文,傅里叶变换就是提取组合波形的频率及其“幅值”。这里的幅值就是Fn,频率就是nw1

  • 0
    点赞
  • 6
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知所无一

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值