直观的理解傅里叶变换
作者初学傅里叶变换时,就一直没有弄明白傅里叶到底是什么东西,只是死记硬背通过了考试,但后来发现在实际的应用时需要理解傅里叶变换。所以查阅了很多资料,最终理解了傅里叶变换及其公式推导。现在总结一下。
首先,需要知道傅里叶变换是做什么的?有什么用? 这里我推荐几个视频,可以说是通俗易通,大家可以看完视频后,再学习公式。
傅里叶公式推导
我相信通过以上两个视频,大家应该对傅里叶有了一个大概的了解。作者的理解就是,傅里叶变换就是提取组合波形的频率和对应频率的**“幅值”**。
先上一下傅里叶级数的公式,并推导它:
经过上面的视频,我们知道了任意一个波形都可以用无数个正弦波或余弦波来拟合。
在进行对a0进行推导之前,我们先了解一下三角函数的正交性:
一个三角函数系:1,cosx , sinx , cos2x , sin2x , … , cosnx , sinnx , … 如果这一堆函数(包括常数1)中任何两个不同函数的乘积在区间[-π, π]上的积分等于零,就说三角函数系在区间[-π, π]上正交 于是有一下几个公式:
前三个公式比较好理解,第四个公式推导如下:
此外,我画了一副图,帮助理解后三个公式:
a0的推导
我们回到对傅里叶级数公式的推导中:
这样,我们就得出a0
an 和bn的推导
用cos(kwt)乘以6式的两边:
此时,an 和bn就已经推导出来了傅里叶级数就如下计算:
傅里叶变换
好了,我们已经清楚的知道傅里叶级数是怎么来的了,下面我们来看看傅里叶变换。
我们会用到一个重要的公式,欧拉公式:
ejnwt=cos(nwt)+jsin(nwt)
e-jnwt=cos(nwt)-jsin(nwt)
所以: cos(nwt) = 1/2*(ejwnt+e-jwnt)
sin(nwt) = 1/2j * (ejnwt-e-jwnt)
将其带入傅里叶级数,得到:
我们假设F0 Fn 和 F-n,并将an和bn带入得到:
到这里,我们就可以得出傅里叶变换:
回顾前文,傅里叶变换就是提取组合波形的频率及其“幅值”。这里的幅值就是Fn,频率就是nw1。