[数论+模板] 约数相关算法模板(模板)

1. 求约数+模板

869. 试除法求约数

在这里插入图片描述
思路:

  • 约数成对出现,试除枚举的时候仅枚举较小的那个约数即可,所以可以枚举到 n \sqrt n n 即可。故时间复杂度为 O ( n ) O(\sqrt n) O(n )
  • 注意平方数不要将其相同约数加两遍

模板代码:

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int m;

vector<int> get_divisors(int n) {
    vector<int> res;
    
    for (int i = 1; i <= n / i; ++i) {
        if (n % i == 0) {
            res.push_back(i);
            if (i != n / i) res.push_back(n / i);   // 注意平方数
        }
    }
    
    sort(res.begin(), res.end());
    return res;
}

int main() {
    cin >> m;
    while (m --) {
        int n;
        cin >> n;
        auto res = get_divisors(n);
        for (auto e:res) cout << e << ' ';
        cout << endl;
    }
    return 0;
}

在这里插入图片描述

2. 约数个数+模板

870. 约数个数

在这里插入图片描述
公式推导:

  • 常用数论公式,如果 N = p 1 a 1 p 2 a 2 . . . p k a k N=p{_1}^{a_1}p{_2}^{a_2}...p{_k}^{a_k} N=p1a1p2a2...pkak
  • 那么,约数个数即为 ( a 1 + 1 ) ( a 2 + 1 ) . . . ( a k + 1 ) (a_1 + 1)(a_2 + 1)...(a_k + 1) (a1+1)(a2+1)...(ak+1)
  • 因为任意一个约数可以写成: d = p 1 b 1 p 2 b 2 . . . p k b k d=p{_1}^{b_1}p{_2}^{b_2}...p{_k}^{b_k} d=p1b1p2b2...pkbk,其中, b i ∈ [ 0 , a i ] b_i \in [0,a_i] bi[0,ai] 的整数,只要每一项的指数有所不同则约数不同,则约数不同,则约数个数完全等价于 b i b_i bi b k b_k bk 的取法个数。乘法原理即可得到约数个数即为 ( a 1 + 1 ) ( a 2 + 1 ) . . . ( a k + 1 ) (a_1 + 1)(a_2 + 1)...(a_k + 1) (a1+1)(a2+1)...(ak+1)

int 范围内一个数最多的约数个数大概在 1500 个左右,可见并不多。

思路:

  • 求得乘积的唯一分解式,可以将每个数进行唯一分解,然后相同质数的次数相加即可
  • 然后套用公式,搞定

模板代码:

#include <iostream>
#include <algorithm>
#include <unordered_map>

using namespace std;

typedef long long LL;

const int MOD = 1e9+7;

int m;
unordered_map<int, int> primes;

int main() {
    cin >> m;
    while (m --) {
        int n;
        cin >> n;
        
        for (int i = 2; i <= n / i; ++i) {      // 分解质因数
            while (n % i == 0) {
                n /= i;
                primes[i] ++;
            }
        }
        
        if (n > 1) primes[n] ++;
    }
    
    LL res = 1;
    for (auto e:primes) res = res * (e.second + 1) % MOD;
    
    cout << res << endl;
    
    return 0;
}

在这里插入图片描述

3. 约数之和+模板

871. 约数之和

在这里插入图片描述

思路:

  • 常用数论公式,如果 N = p 1 a 1 p 2 a 2 . . . p k a k N=p{_1}^{a_1}p{_2}^{a_2}...p{_k}^{a_k} N=p1a1p2a2...pkak
  • 那么,约数之和即为 ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) . . . ( p k 0 + p k 1 + . . . + p k a k ) (p{_1}{^0}+p{_1}{^1}+...+p{_1}^{a_1})...(p{_k}{^0}+p{_k}{^1}+...+p{_k}^{a_k}) (p10+p11+...+p1a1)...(pk0+pk1+...+pkak)
  • 乘法分配律展开,每一种组合方式都是一个约数,这些约数的求和就是约数之和。其实展开的乘积项的个数就等于的约数个数,两者完全互通。

注意下求解类似于 p 0 + p 1 + . . . + p k p{^0}+p{^1}+...+p^{k} p0+p1+...+pk 这样的多项式之和可以巧妙的写为:

LL t = 1;
while (k --) t = t * p + 1; 

模板代码

#include <iostream>
#include <algorithm>
#include <unordered_map>

using namespace std;

typedef long long LL;

const int MOD = 1e9+7;

int m;
unordered_map<int, int> primes;

int main() {
    cin >> m;
    while (m --) {
        int n;
        cin >> n;
        
        for (int i = 2; i <= n / i; ++i) {
            while (n % i == 0) {
                n /= i;
                primes[i] ++;
            }
        }
        
        if (n > 1) primes[n] ++;
    }
    
    LL res = 1;
    for (auto e:primes) {
        int p = e.first, a = e.second;  // p为质数,a为出现次数
        LL t = 1;
        // 完美的构造,t = p * t + 1
        // 执行0次为 1                  a=0
        // 执行一次为 p + 1             a=1
        // 执行两次为 p^2+p+1           a=2
        // 执行三次为 p^3+p^2+p+1       a=3
        while (a --) t = (t * p + 1) % MOD; 
        res = res * t % MOD;
    }
    
    cout << res << endl;
    
    return 0;
}

4. 最大公约数+模板

872. 最大公约数
在这里插入图片描述
众所周知,欧几里得算法,也称辗转相除法

数论基本性质:

  • d ∣ a d \mid a da d ∣ b d \mid b db,则 d ∣ a + b d \mid a+b da+b ,也有 d ∣ a x + b y d \mid ax+by dax+by
  • 核心原理: g c d ( a , b ) = g c d ( b , a % b ) gcd(a, b)=gcd(b, a\%b) gcd(a,b)=gcd(b,a%b)
  • 由于 a % b = a − ⌊ a b ⌋ ∗ b = a − c ∗ b a\%b = a -\left \lfloor \frac a b \right \rfloor * b=a-c*b a%b=abab=acb
  • 则, g c d ( a , b ) = g c d ( b , a − c ∗ b ) gcd(a, b)=gcd(b, a-c*b) gcd(a,b)=gcd(b,acb)
  • 证明上式成立:
  • 左式成立则: d ∣ a d \mid a da d ∣ b d \mid b db,则易得 d ∣ a − c ∗ b d \mid a-c*b dacb
  • 右式成立则: d ∣ b d \mid b db d ∣ a − c ∗ b d \mid a-c*b dacb,由于 d ∣ b d \mid b db ,则可构造 d ∣ a − c ∗ b + c ∗ b d \mid a-c*b+c*b dacb+cb,得: d ∣ a d \mid a da
  • 则等式左右两边的公因数集合是一样的,那么其最大公因数也一样。故, g c d ( a , b ) = g c d ( b , a % b ) gcd(a, b)=gcd(b, a\%b) gcd(a,b)=gcd(b,a%b) 成立。

喜闻乐见,一行搞定。感觉数学式子推导还是 ipad 手写会比较香,LaTeX 这玩意真的有点慢…且感觉表述不够清楚直观,目前仍处于学习阶段,还是多多丰富知识为主,怎么好用、有效怎么来

模板代码:

#include <iostream>
#include <algorithm>

using namespace std;

int m;

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

int main() {
    cin >> m;
    
    while (m --) {
        int a, b;
        cin >> a >> b;
        
        cout << gcd(a, b) << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值