[数论+模板] 欧拉函数算法模板及欧拉定理、费马定理简单证明(模板)

1. 公式求解欧拉函数+模板

873. 欧拉函数

在这里插入图片描述
重点: 欧拉函数、容斥原理、分解质因数

在这里插入图片描述

数学式子还是手写推公式比较爽,原谅我的丑字…

时间复杂度分析:

  • 算法时间受限于分解质因数。分解质因数的时间复杂度为 O ( n ) O(\sqrt n) O(n ),故该算法时间复杂度就是 O ( n ) O(\sqrt n) O(n )。总共 n n n 个数,则总的时间复杂度为 O ( n n ) O( n\sqrt n) O(nn )
  • 即, 100 ∗ 2 e 9 100* \sqrt {2e9} 1002e9 ,大约在 400 w 400w 400w 500 w 500w 500w 之间的时间复杂度。1 秒内可出解。

模板代码:

#include <iostream>
#include <algorithm>

using namespace std;

int main() {
    int m;
    cin >> m;
    
    while (m --) {
        int a;
        cin >> a;
        
        int res = a;
        for (int i = 2; i <= a / i; ++i) {
            if (a % i == 0) {
                res = res / i * (i - 1);    // 等价于res=res*(1-1/i),避免小数出现
                while (a % i == 0) a /= i;
            }
        }
        
        if (a > 1) res = res / a * (a - 1);
        
        cout << res << endl;
    }
    return 0;
}

2. 筛法求解欧拉函数+模板

874. 筛法求欧拉函数

在这里插入图片描述

基于线性筛的思想,就能顺便求出很多东西,比如现在的欧拉函数。

现在需要求解从 1 到 n n n 每个数的欧拉函数值,并且对其求和。那么普通公式法求欧拉函数时间复杂度将为 O ( n n ) O(n\sqrt n) O(nn ),很容易超时。采用线性筛进行优化,可以将该过程优化至 O ( n ) O(n) O(n)

公式推导:

  • 如果线性筛当前枚举的数 i 为质数,即,st[i] == false,那么很容易得到 1 到 i - 1 均与 i 互质,那么 phi[i] = i
  • 如果当前前数 i % primes[j] == 0 说明 primes[j]i 的最小质因子,那么对于 i * primes[j] 来讲,也是它的最小质因子,仅仅在唯一分解式中 primes[j] 的次数加 1 而已。然而,一个数的欧拉函数结果由公式可以看出,其仅与分解的质因数有关,而与它质因数的次数无关。 所以在计算 phi[i] 的过程中 (1-primes[j]) 这一项已经被计算过了,故,phi[primes[j] * i]phi[i] 唯一不同点在于N 不同,相差了 primes[j] 倍。故有,当 i % primes[j] == 0 时,phi[i * primes[j]] = phi[i] * primes[j];
  • 同理,当 i % primes[j] != 0 时,意味着 primes[j] 小于 i 的所有质因子,那么也就是 i * primes[j] 的最小质因子,且 (1-primes[j]) 这一项并没有在 phi[i] 中算过,那么就有 phi[primes[j] *i] = phi[i] * primes[j] * (1-1/primes[j])=phi[i]*(primes[j]-1)

这样就能够不重不漏的在线性筛的过程中顺便计算得到了每个数的欧拉函数结果。线性筛的思想 zdnb

模板代码:

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1e6+5;

int primes[N], cnt;
int phi[N];
bool st[N];

LL get_eulers(int n) {
    LL res = 0;
    phi[1] = 1;
    
    for (int i = 2; i <= n; ++i) {
        if (!st[i]) {
            phi[i] = i - 1;             // 质数i的欧拉函数就是i-1
            primes[cnt ++] = i;
        }
        for (int j = 0; primes[j] <= n / i; ++j) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) {   // pj是i的最小质因子,故在求解phi[i]过程中已经乘过了,仅是N不同
                phi[i * primes[j]] = phi[i] * primes[j];
                break;
            }
            // pj是i*pj的最小质因子,在求phi[i]时未被乘过,
            // 即 phi[i*pj] = pj*phi[i]*(1-1/pj)
            phi[i * primes[j]] = phi[i] * (primes[j] - 1);
        }
    }
    
    for (int i = 1; i <= n; ++i) res += phi[i];
    
    return res;
}

int main() {
    int n;
    cin >> n;
    
    cout << get_eulers(n) << endl;
    
    return 0;
}

3. 欧拉定理与费马定理简单证明

在这里插入图片描述
其实,ap 互质且 p 为质数的话就一定保证了 a 不为 p 的整数倍了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值