[Mdfs] lc131. 分割回文串(子集型枚举+选不选+选不选细节+回文串预处理优化+dp枚举顺序+好题)

1. 题目来源

链接:131. 分割回文串

必看,必刷,dfs 经典:

2. 题目解析

子集型回溯的拓展题目,看看如何进行问题转换。以及代码优化,很有价值的一道题目哈。

思路:选不选

  • 针对 “aab” 来看,实际上就是枚举下每个分隔符到底要不要进行分割。
  • 这样的话,就枚举出了所有的分割方案,然后再进行回文串判断即可。
  • 那么问题就转变成了 [Mdfs] lc78. 子集(二进制枚举+排列类型枚举+经典) 中的,选不选问题。
  • 同样的,有两种 dfs 做法:
    • 每个分割串,选不选 的做法。
    • for 循环枚举子串的结束位置。
  • 值得注意的是,对于 选不选 问题而言,是有可能出现空集的,即一路都走到不选的情况,导致对字符串的划分出现问题。
  • 这里就有一个技巧了,我们是优先枚举 不选 的。那么只需要加入一个判断,保证最后一位必须要选即可,即保证字符串一定能在末尾被划分即可。
  • 具体看代码,简单易懂。

思路:for 循环枚举划分位置

  • 这个比较简单易理解,dfs 枚举划分子串的结束位置即可。

优化思路:预处理回文串

  • 这个是比较经典的一个预处理问题。
  • f[i][j] 为 [i, j] 下标的子字符串,是否为回文串。
  • 那么 f[i][j] = (f[i+1][j-1]) && s[i]==s[j] 进行状态转移。
  • 观察这个状态转移,这个 j 状态会依赖 j-1 状态。即 j 是依赖前一个状态的。这里就需要注意一下枚举顺序了,要求 j 要能提前被算出。故,j 要先进行枚举。
  • 这个枚举顺序还是很关键的哈,可以想一想之前 f[i][j]=f[i-1][j]+x 这样的枚举,为啥是先 i 再 j。而现在 f[i][j]=f[i+1][j-1] 就是先 j 再 i 了哈。

时间复杂度: O ( n ∗ 2 n ) O(n*{2^n}) O(n2n)

空间复杂度: O ( n 2 ) O(n^2) O(n2)


选不选、简单判断 回文串:

class Solution {
public:
    vector<vector<string>> all;
    vector<string> path; 
    void dfs(string s, int last, int u) {
        if (u == s.size()) {
            all.push_back(path);
            return ;
        }

        // 这个很关键哈。这个 u=n-1 时意味着一定会选,
        if (u < s.size() - 1) dfs(s, last, u + 1);

        path.push_back(s.substr(last, u - last + 1));
        dfs(s, u + 1, u + 1);
        path.pop_back();

    }
    vector<vector<string>> partition(string s) {
        int n = s.size();
        dfs(s, 0, 0);
         
        vector<vector<string>> res;
        for (auto& v : all) {
            bool flag = true;
            for (auto& t : v) {
                int n = t.size();
                for (int l = 0, r = n - 1; l < r; l ++ , r -- ) {
                    if (t[l] != t[r]) {
                        flag = false;
                        break;
                    }
                }
                if (!flag) break;
            }
            if (flag) res.push_back(v);
        }

        return res;
    }
};

for 循环枚举划分位置

class Solution {
public:
    vector<vector<string>> all;
    vector<string> path;
    void dfs(string s, int u) {
        if (u == s.size()) {
            all.push_back(path);
            return ;
        }

        for (int i = u; i < s.size(); i ++ ) {
            path.push_back(s.substr(u, i - u + 1));
            dfs(s, i + 1);
            path.pop_back();
        }
    }
    vector<vector<string>> partition(string s) {
        int n = s.size();
        dfs(s, 0);
         
        vector<vector<string>> res;
        for (auto& v : all) {
            bool flag = true;
            for (auto& t : v) {
                int n = t.size();
                for (int l = 0, r = n - 1; l < r; l ++ , r -- ) {
                    if (t[l] != t[r]) {
                        flag = false;
                        break;
                    }
                }
                if (!flag) break;
            }
            if (flag) res.push_back(v);
        }

        return res;
    }
};

回文串判断优化:

class Solution {
public:
    vector<vector<bool>> f;
    vector<vector<string>> res;
    vector<string> path;
    void dfs(string s, int u) {
        if (u == s.size()) {
            res.push_back(path);
            return ;
        }

        for (int i = u; i < s.size(); i ++ ) {
            if (f[u][i]) {
                path.push_back(s.substr(u, i - u + 1));
                dfs(s, i + 1);
                path.pop_back();
            }
        }
    }
    vector<vector<string>> partition(string s) {
        int n = s.size();
        f = vector<vector<bool>>(n, vector<bool>(n));
        for (int j = 0; j < n; j ++ )
            for (int i = 0; i <= j; i ++ ) {
                if (i == j) f[i][j] = true;
                else if (s[i] == s[j]) {
                    // 只有两个字符,或者 f[i+1][j-1] 是回文的,则状态转移到 f[i][j]
                    if (i + 1 > j - 1 || f[i + 1][j - 1]) f[i][j] = true;
                }
            }

        dfs(s, 0);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值