柳奈奈
码龄7年
关注
提问 私信
  • 博客:45,288
    问答:357
    45,645
    总访问量
  • 10
    原创
  • 318,146
    排名
  • 32
    粉丝
  • 0
    铁粉

个人简介:一只小白努力中,请多多指教!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-12-24
博客简介:

柳奈奈的博客

查看详细资料
个人成就
  • 获得83次点赞
  • 内容获得107次评论
  • 获得529次收藏
  • 代码片获得1,656次分享
创作历程
  • 1篇
    2022年
  • 9篇
    2021年
成就勋章
TA的专栏
  • 数据可视化方法录
    2篇
  • 小白的机器学习方法录
    2篇
  • 出坑记
    5篇
  • 数据处理二三事
    6篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习数据分析
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用Python进行多个机器学习模型、多个评价指标表格绘制(AUC、敏感度、特异度、F1值、约登指数、MCC、Kappa等)

本文简要介绍了常用的机器学习模型评价指标,并使用Python绘制单个模型和多个模型的各个评价指标的汇总表格。评价指标有:训练集AUC、测试集AUC、敏感度(Sensitivity)、特异度(Specificity)、PPV、NPV、PLR、NLR、F1值、Youden Index、MCC、Kappa。
原创
发布博客 2022.03.03 ·
10765 阅读 ·
10 点赞 ·
20 评论 ·
133 收藏

python 将多个模型的ROC曲线绘制在一张图里(含图例)

将多个模型ROC曲线绘制在一张图中的python函数方法,其中包含函数、调用方法和注意事项。
原创
发布博客 2021.08.12 ·
19859 阅读 ·
54 点赞 ·
85 评论 ·
355 收藏

通过日期的相减计算年龄

有时候我们需要通过日期的加减来计算年龄,以下函数呢就是一个可以简单进行年龄计算的函数啦~import datetimedef calculate_age(start_time,end_time): if start_time != None and end_time != None: start_d = datetime.strptime(start_time, "%d-%b-%y") end_d = datetime.strptime(end_time, "%d
原创
发布博客 2021.06.10 ·
3205 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

特征清洗:基于条件改变数据集中一列中特定行的值(isin和str.contains)

1.精准匹配在数据集清洗中,经常需要通过判断一个特征的值是否等于一个特定值(或一些特征值),从而改变相对应的另外一列中特定行的值。代码如下:df.loc[df['column_condition'].isin([value_list]) == True, 'column_tochange'] = new_value其中’column_condition’是作为判断条件的特征名称,“value_list”是作为精准匹配的值的列表。这个列表中可以有多个值,也可以只有一个值,列表中可以同时有数字和字符串多
原创
发布博客 2021.06.03 ·
472 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

安装本地的python包

1. 终端安装进入控制终端,使用“cd”命令进入到安装包的文件夹中,找到对应的.py安装文件。(该文件可能命名为“setup.py”,也可能命名为“__init__.py”等)使用如下命令即可完成安装。python setup.py install2.直接复制粘贴安装包将解压好的安装包直接复制到对应的安装python的文件夹中即可。以下以我用的macOS为例:(1)首先在桌面点选“Go”,选择其中的“Computer”选项。(2)选择本地盘➡️“Users”文件夹➡️...
原创
发布博客 2021.06.03 ·
4521 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

依据特征名或特征中的关键字筛选特征

有时我们需要对数据集中的特征进行筛选,依据特征名或特征中的关键字选择或删除一些特征。下文主要介绍这两种不同的基于特征名的特征筛选方式。1.依据特征名选择特征首先创建说明用数据集:d = {'逻辑回归': [1, 2], '随机森林-集成模型': [3, 4], 'XGBoost-集成模型': [5, 6]}df = pd.DataFrame(data=d)(1)筛选需要的特征设想我们只想保留“逻辑回归”和“随机森林-集成模型”这两列数据(两个特征),可以直接用名字进行筛选。#若需要保留的特
原创
发布博客 2021.05.20 ·
273 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ROC曲线和对角线有交叉是否表示模型不可靠?

发布问题 2021.05.12 ·
1 回答

如何计算分类变量各个类别的占比并保存为表格(python)

我需要计算数据集df中某一个分类变量各个类别的占比时,写了如下代码:category_percentage_writer = pd.ExcelWriter('各分类特征类别数量和比例.xlsx')for i in df.columns: if df[i].dtype == object: percent = pd.DataFrame(df[i].value_counts(normalize=True)*100) count = pd.DataFrame(df[i
原创
发布博客 2021.05.11 ·
2596 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

机器学习集成方法Bagging、Boosting和Stacking

一. 概述集成学习是一种训练多个弱学习器(weak learners,即预测能力有限的模型)从而得到更好预测结果的方法。一般情况来说,集合弱学习器可以得到更准确更强力的模型。(这可能就是三个臭皮匠顶个诸葛亮吧~)1. 集成学习的分类集成学习方法主要有三类:1.Bagging: “并行”训练同质的弱学习器,然后将他们进行综合(平均?投票?)产生结果较好的模型。该种方法可以有效减少模型的variance。2.Boosting: “链式”训练同质的弱学习器,后一个模型在前一个模型上进行修正和完善。该种
原创
发布博客 2021.05.19 ·
1980 阅读 ·
3 点赞 ·
1 评论 ·
17 收藏

安装XGBoost和LightGBM出坑记(MacOS)

案情经过这两天差点儿被XGBoost和LightGBM(其实是卡在Homebrew的安装)搞疯哈哈哈。因为要用XGBoost和LightGBM两个机器学习算法的包,所以尝试在jupyter notebook进行安装。在一个月不黑风不高的中午,我一如既往噼里啪啦面带微笑游刃有余地打下了如下两行安装指令:pip install xgboostpip install lightgbm然后轻松得到了安装完成可能需要重启kernal的指示(如下图)轻点鼠标等待重启之后,我施施然打下了两行导入包的指令:
原创
发布博客 2021.04.02 ·
936 阅读 ·
4 点赞 ·
2 评论 ·
10 收藏

python数据集异常符号的处理和缺失值填补的问题

发布问题 2021.03.29 ·
4 回答

决策树和它的周边

决策树的一些总结一. 概述二. 一些需要注意的概念1.信息和信息熵(1)熵的概念(2)信息的计算事件的信息随机变量的信息(信息熵)分布的信息(熵)(3)信息熵的性质(4)互信息(MI)(5)信息增益(IG)(6)信息增益率2.基尼不纯度(*Gini Impurity*)3.噪音数据(*Noisy Data*)4.节点(*node*)三. 决策树的生成第一步:确定根节点第二步:节点的分裂第三步:重复和停止生长四.决策树的分类1.ID32.C4.5优点:缺点:3.CART优点:五. 决策树的优缺点优点:缺点:
原创
发布博客 2021.03.25 ·
371 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏