神经网络——激活函数的作用

激活函数是神经网络的关键,引入非线性因素,使网络能解决线性模型无法处理的问题。即使多层神经网络仅包含线性函数,其输出仍为线性组合,相当于单层感知机,无法有效处理非线性分类任务。例如,对于非线性可分的数据集,单层或多层感知机无法通过线性边界正确分类。通过引入如sigmoid等激活函数,输出变为非线性,增加了网络的表达能力,使得神经网络能够逐步学习和优化,解决非线性问题。
摘要由CSDN通过智能技术生成

激活函数是神经网络的一个重要组成部分。如果不用激活函数(即相当于激活函数为f(x)=x),在这种情况下,网络的每一层的输入都是上一层的线性输出,因此,无论该神经网络有多少层,最终的输出都是输入的线性组合,与没有隐藏层的效果相当,这种情况就是最原始的感知机。

激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题。

例如,对于一个二分类问题,如下图:

利用单层的感知机, 用它可以划出一条线, 把平面分割开:

 

上图直线是由w_{1}x_{1} + w_{2}x_{2}+b=0得到,那么该感知器实现预测的功能步骤如下,就是我已经训练好了一个感知器模型,后面对于要预测的样本点,带入模型中,如果y>0,那么就说明是直线的右侧

在PyTorch神经网络中,常用的激活函数有Sigmoid函数、ReLU函数和Softmax函数。Sigmoid函数在机器学习的二分类模型中常被使用,例如逻辑回归。它模拟了生物神经元的特性,当神经元获得的输入信号累计超过一定的阈值后,神经元被激活并输出电信号,否则处于抑制状态。ReLU函数是一种非线性函数,它在输入大于零时返回输入值,而在输入小于等于零时返回零。ReLU函数的主要作用是增加神经网络的表达能力,使其能够提取出高语义的信息。Softmax函数常用于多分类问题,它将输入向量转换为概率分布,使得每个类别的概率之和为1。通过选择适当的激活函数,可以提高神经网络的性能和准确度。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [PyTorch教程(5)激活函数](https://blog.csdn.net/weixin_43229348/article/details/119353266)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [一起来学PyTorch——神经网络激活函数层)](https://blog.csdn.net/TomorrowZoo/article/details/129453233)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值