激活函数是神经网络的一个重要组成部分。如果不用激活函数(即相当于激活函数为f(x)=x),在这种情况下,网络的每一层的输入都是上一层的线性输出,因此,无论该神经网络有多少层,最终的输出都是输入的线性组合,与没有隐藏层的效果相当,这种情况就是最原始的感知机。
激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题。
例如,对于一个二分类问题,如下图:

利用单层的感知机, 用它可以划出一条线, 把平面分割开:

上图直线是由
得到,那么该感知器实现预测的功能步骤如下,就是我已经训练好了一个感知器模型,后面对于要预测的样本点,带入模型中,如果
,那么就说明是直线的右侧

激活函数是神经网络的关键,引入非线性因素,使网络能解决线性模型无法处理的问题。即使多层神经网络仅包含线性函数,其输出仍为线性组合,相当于单层感知机,无法有效处理非线性分类任务。例如,对于非线性可分的数据集,单层或多层感知机无法通过线性边界正确分类。通过引入如sigmoid等激活函数,输出变为非线性,增加了网络的表达能力,使得神经网络能够逐步学习和优化,解决非线性问题。
最低0.47元/天 解锁文章
1379

被折叠的 条评论
为什么被折叠?



